Белки ответа острой фазы при воспалении

Белки ответа острой фазы при воспалении thumbnail

Белки острой фазы воспаления — это неоднородная группа белковых субстанций, ко­торые интенсивно синтезируются при развитии острой фазы воспаления по принципу индуцибельной системы генной регуляции и являются важными компонентами врожденных механизмов резистентности.

Почти все острофазовые белки вы­рабатываются гепатоцитами под влиянием доиммуных цитокинов макрофагов (в первую очередь интерлейкин-6 [ИЛ-6], а также интерлейкин-1β [ИЛ-1β] и фактор некроза опухоли α [ФНО- α]).

Все острофазовые белки условно разделены на три группы (А, Б и В) и отличаются друг от друга по механизму действия. В груп­пу А включены церулоплазмин и С3-компонент комплемента. При развитии вос­паления их содержание в плазме крови возрастает на 25-50% от исходного. Группу Б составляют α1-антитрипсин, α1-антихимотрипсин, β2-макроглобулин, гаптоглобин и фибриноген. В острой фазе воспаления их уровень повышается в 2-3 раза. Перечисленные острофазовые белки играют протективную роль, максимально ограничивая самоповреждение при воспалении, обуславли­вая наиболее придельное, а значит, и экономное использование других факто­ров врожденной резистентности.

И наконец, в третью группу включены С-реактивный белок, ман­нозосвязывающий протеин, сывороточный белок амилоида А и интерлейкин-1β. Их уровень при воспалении увеличивается почти в 1000 раз. Такие разнород­ные белки объединены в единую группу, исходя из практических соображений, поскольку их содержание при воспалении резко возрастает, они используются на практике как лабораторные маркеры воспалительного процесса. Данные белки острой фазы задействованы в эффекторных механизмах. Из таких белков наиболее изученными являются С-реактивный белок и маннозосвязывающий белок. Оба фактора синтезируются гепатоцитами и обладают по крайней мере двумя свойствами, которые опре­деляют их противомикробную активность, — способностью к опсонизации и обеспечению активации комплемента.

Церулоплаз­мин относится к так называемым антинутриентам — эффективно связывает медь, предотвращая поступление этого микроэлемента в микроорганизм.

Сывороточный белок амилоида А

Сывороточный белок амилоида А используется для быстрого меха­нического заполнения дефектов, образованных вследствие некротических про­цессов при воспалении.

Многие острофазовые белки являются ингибиторами протеаз (например, α1-антитрипсин, α1-антихимотрипсин и β2-макроглобулин). Именно они инактивируют лизосомальные ферменты, высвобожденные из разрушенных клеток, нейтрализуют протеолитические энзимы, секретированные фагоцитами, а также обеспечивают корректную степень активации калликреин-кининовой системы и системы свертывания крови.

Гаптоглобин обеспечивает эвакуацию уцелевшего гемоглобина из очага воспаления.

Фибриноген при экссудации в периваскулярное пространство образует фибри­новые сгустки, составляющие преграду для быстрого распространения воспа­лительного процесса, а также выполняет функцию опсонина.

С-реактивный белок (рис. 3) является своеобразным прототипом ан­титела и имеет высокую тропность к фосфорилхолину, лецитину и подобным им молекулам, которые широко представлены среди поверхностных структур микроорганизмов. Такие же молекулы находятся и на собственных клетках, однако они надежно экранированы от распознавания. Связавшись с указан­ной молекулой, С-реактивный белок может выступать в роли опсонина, об­легчая распознавание инфекционного агента фагоцитами, или активировать систему комплемента по классическому пути. Дело в том, что данный фактор способен связывать Clq-компонент комплемента с последующим вовлечени­ем всего каскада и формированием мембранатакующих комплексов.

Известно, что содержание СРБ резко возрастает при аутоиммунной па­тологии (в частности, при системных заболеваниях соединительной ткани). Бытует ошибочное мнение, что СРБ способствует аутоагрессии, хотя в дейст­вительности он призван ограничивать ее. Установлено, что С-реактивный протеин совершает опсонизацию и обуславливает дальнейшее разрушение экстраклеточной ДНК и клеточного детрита, которые могут стать причиной аутоиммунной атаки (scavengerfunction). Кроме этого, СРБ осуществляет экра­нирование наиболее распространенных аутоантигенных детерминант соедини­тельной ткани (фибронектин, ламинин, поликатионные поверхности коллагена, липопротеины низкой и очень низкой плотности). Связываясь с этими лиганда­ми, СРБ выполняет роль своеобразного пластыря, прикрывающего аутоантигены от распознавания и презентации, или же обеспечивает их дальнейшее разруше­ние, что приводит к утрате антигенных свойств. Материал с сайта https://wiki-med.com

Маннозосвязывающий лектин

Маннозосвязывающий протеин (МСП) является лектином и взаимодействует с остатками маннозы на поверхности кле­точных стенок бактерий, опсонизируя их для фагоцитоза моноцитами (макрофаги как более зрелые клетки имеют мембран­ные маннозосвязывающие рецепторы). Данный протеин работает вместе с так на­зываемыми лектин-ассоциированными протеазами 1 и 2. Присоединение этого фактора к микробным лигандам активирует протеазы, которые расщепляют С2- и С4-компоненты комплемента. Продукты расщепления — фрагменты С2а и С4Ь — формируют СЗ-конвертазу, которая инициирует дальнейший молекулярный каскад комплемента. Таким образом, комплекс маннозосвязы­вающего протеина и его лектин-ассоциированных протеаз является аналогом Cl-компонента комплемента. Но при этом активация комплемента происхо­дит без участия иммунных комплексов, а значит, начинается сразу же после поступления инфекционного агента в организм.

Читайте также:  Воспаление кишечника у ребенка травы

В последнее время установлена важная роль МСП в аутоиммунных реакци­ях. Низкая экспрессия этого белка может рассматриваться как фактор риска СКВ, что связано с нарушением клиренса иммунных комплексов, которые об­разуются при любой инфекции. С другой стороны, МСП играет ведущую роль в аутоагрессии при ревматоидном артрите (РА). Известно, что одной из при­чин иммунных расстройств при РА является синтез дефектного IgG, который не содержит остатка галактозы. Это приводит к оголению N-ацетил глюкозаминовых групп, которые распознаются МСП как чужеродные, что вызывает активацию комплемента и аутоповреждение.

Белки ответа острой фазы при воспаленииНа этой странице материал по темам:

  • белок острой фазы воспаления это

  • белки острой фазы восполения,их роль в механизмах врожденного иммунитета

  • белки острой фазы это википедия

  • белки острофазовой реакции

  • фосфорилхолин связывается с с реактивным белком

Источник

ЛЕКЦИЯ №3. ГУМОРАЛЬНЫЕ ФАКТОРЫ ВРОЖДЕННОГО ИММУНИТЕТА

Содержание

1. Воспалительные белки острой фазы воспаления:

1. Система комплемента. Механизм действия

2. Интерлейкины. Механизм действия

3. Интерфероны. Механизм действия

4. Факторы некроза опухоли. Механизм действия

5. Колониестимулирующие факторы. Механизм действия

2. Защитные белки острой фазы воспаления:

1. С-реактивный белок (СРБ).

2. Сывороточный амилоидный А компонент (СААК).

3. α1-Антихимотрипсин.

4. Фибриноген.

5. Гаптоглобин (Гб).

6. α-Гликопротеин (α-Гп).

7. Церулоплазмин (Цп).

8. Лейкотриены (ЛТ).

Гуморальные факторы врожденного иммунитета – это группа механизмов, обозначенных как реакции острой фазы. Они развиваются при повреждении в острый период и особенно в тех случаях, когда повреждение приводит к активации иммунитета, системы крови и развитию воспаления.

Реакция острой фазы воспаления — радикальное изменение биосинтеза белков в печени. Понятие «белки острой фазы»объединяет до 30 белков плазмы крови, участвующих в воспалении.

Острофазные белки.Вырабатываются в гепатоцитах и клетках иммунной системы при остром воспалении. В интактном состоянии они содержатся в сыворотке крови в небольших концентрациях, при остром воспалении их концентрация возрастает кратно ( в 2 – 1000 раз).

Острофазные белки условно делятся на две группы:

1. Воспалительные (цитокины):

1. Система комплемента. Механизм действия

2. Интерлейкины. Механизм действия

3. Интерфероны. Механизм действия

4. Факторы некроза опухоли. Механизм действия

5. Колониестимулирующие факторы. Механизм действия

2. Защитные:

1. С-реактивный белок (СРБ).

2. Сывороточный амилоидный А компонент (СААК).

3. α1-Антихимотрипсин.

4. Фибриноген.

5. Гаптоглобин (Гб).

6. α-Гликопротеин (α-Гп).

7. Церулоплазмин (Цп).

8. Лейкотриены (ЛТ).

Функции белков острой фазы воспаления:

1. Обеспечивают развитие воспаления;

2. Стимулируют фагоцитоз чужеродных начал;

3. Нейтрализуют свободные радикалы;

4. Разрушают потенциально опасные для тканей белки и т.д.

Действие этих систем подчиняется принципам:

· Принцип каскада

· Принцип сети

Каскадный принцип —при активации системы происходит последовательное вовлечение факторов.

Принцип сети — одновременное функционирование различных компонентов системы. путем взаимосвязи, взаимного влияния и взаимозаменяемости компонентов сети.

ВОСПАЛИТЕЛЬНЫЕ БЕЛКИ ОСТРОЙ ФАЗЫ ВОСПАЛЕНИЯ

СИСТЕМА КОМПЛЕМЕНТА

Система комплемента – Это каскадная система белков-ферментов, предназначенная для гуморальной защиты организма от действия чужеродных агентов

Термин «комплемент» ввёл Пауль Эрлих в конце 1890-х годов. Эрлих назвал систему белков «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Функции системы комплемента: Сывороточные белки, которые в норме находятся в неактивном состоянии: вызывают перфорацию мембран и лизис клеток, обеспечивают опсонизацию микроорганизмов для их дальнейшего фагоцитоза и инициируют развитие сосудистых реакций воспаления

Пути активации комплемента. Существуют два основных пути активации комплемента:

Классический

Альтернативный.

Механизм действия системы комплемента:

Классический путь.

При появлении во внутренней среде микробных продуктов запускается процесс, который называют активацией комплемента. Активация протекает по типу каскадной реакции, когда каждый предшествующий компонент системы активирует последующий.

¾ Связывание антител с поверхностью антигена запускает каскад системы комплемента:

¾ При встрече антигена и антитела образуется комплекс белков С1.

¾ К ним присоединяются белки С2 и С4

¾ К ним присоеденяется белок С3 конвертаза. С3 является центральным компонентом этого каскада. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента.

¾ При гидролизе С3 образуются фрагменты белков С3б и С3а.

¾ К ним присоеденяются белки С5

¾ Белки С5 и С6 связываются с мембраной клетки антигена, к ним присоединяются белки С7, С8, С9. Эти белки образуют мембраноатакующий комплекс, который образует в мембране антигена пору. Через эту пору мембраноатакующий комплекс проходит в тело антигена и лизирует (разрушает) антиген.

Читайте также:  Внутреннее воспаление глазного яблока

Альтернативный путь.

При встрече антигена и антитела образуется комплек белков С3, исключая фазу присоединения белков С1, С2 и С4.Этот путь быстрого реагирования иммунной системы, необходимый в экстремальных мситуациях.

2. ИНТЕРЛЕЙКИНЫ (ИЛ) — цитокины, ответственные за межклеточные взаимодействия между лейкоцитами. Описано около 20 интерлейкинов.

Механизм действия интерлейкинов:

¾ Активность интерлейкинов проявляется только после взаимодействия (связывания) их со своими рецепторами, расположенными на поверхности макрофагов и Т- и В-лимфоцитов.

¾ В течение нескольких часов после воздействия микробного антигена запускается каскад синтеза интерлейкинов, регулирующих функции иммунокомпетентных клеток,

¾ Через 2 ч после антигенной стимуляции начинается выделение функционально активных интерлейкинов из клеток во внеклеточное пространство. Максимальный уровень их секреции регистрируют через 24-48 ч, после чего их уровень снижается.

¾ Под действием пусковых провоспалительных интерлейкинов в очаге воспаления происходит активация разных типов лейкоцитов, клеток другого происхождения — эндотелиоцитов, фибробластов, кератиноцитов и др.

¾ Воздействие интерлейкиновусиливает основные функции нейтрофилов, макрофагов, натуральных киллеров, Т- и В-лимфоцитов, индуцирует выброс гистамина базофилами и тучными клетками, синтез ПГЕ2 кератиноцитами и другими клетками.

¾ Таким образом, именно через интерлейкины происходит формирование вторичного иммунного ответа. При этом в организме не только осуществляется интегрирование различных элементов системы иммунитета, но и возникает системная реакция острой фазы.

Пролиферация B клеток под действием цитокинов T клетокПролиферация B клеток под действием цитокинов T клеток

3. ИНТЕРФЕРОНЫ (IFN) —ряд белков, выделяемых клетками организма в ответ на вторжение вируса. Благодаря интерферонам, клетки становятся невосприимчивыми по отношению к вирусу. Интерфероны человека подразделяют на группы в зависимости от типа клеток, в которых они образуются: α, β и γ.

Механизм действия интерферона:

¾ При заражении клетки вирус начинает размножаться.

¾ Клетка-хозяин одновременно с этим начинает продукцию интерферона, который выходит из клетки и вступает в контакт с соседними клетками.

¾ Интерферон вызывает изменения в клетках, которые препятствуют размножению вируса, формированию вирусных частиц и дальнейшему его распространению.

Интерферон действует в нескольких направлениях.

1 направление влияния интерферона:

Оказывает влияние на клетки, соседние с инфицированной, запуская в них цепь событий, приводящих к подавлению синтеза вирусных белков и в некоторых случаях сборки и выхода вирусных частиц.

¾ В ответ на воздействие интерферона клетки вырабатывают большое количество протеинкиназы. В результате уровень белкового синтеза в клетке снижается.

¾ После протеинкиназы активируется синтез рибонуклеазы, которая расщепляет клеточные РНК и ещё больше снижает уровень белкового синтеза.

¾ Интерферон угнетает распространение вирусных частиц путём активации белка p53, что ведёт к апоптотической смерти инфицированной клетки.

2 направление влияния интерферона:

Стимуляция иммунной системы для борьбы с вирусами:

¾ Интерферон повышает синтез молекул главного комплекса гистосовместимости I и II классов и активирует иммунопротеасому, которые обеспечивают презентацию вирусов цитотоксическим Т-лимфоцитам и натуральным киллерам

¾ Высокий уровень молекул главного комплекса гистосовместимости II класса обеспечивает презентацию вирусных антигенов Т-хелперам. Т-хелперы, в свою очередь, выделяют цитокины, которые координируют активность других клеток иммунной системы.

4. ФАКТОР НЕКРОЗА ОПУХОЛИ (ФНО). Фактор некроза опухоли синтезируется моноцитами-макрофагами и Т-лимфоцитами. Ему присуще свойства цитотоксичекого действия на определенные клетки опухолей, путем геморрагического некроза.

Механизм действия:

¾ Цитотоксическое действие ФНО на опухолевую клетку связано с деградацией ДНК и нарушением функционирования митохондрий.

¾ ФНО-альфа убивает раковые клетки за счет запуска процесса апоптоза и оксидантного действия молекул кислорода и окиси азота.

5. КОЛОНИЕСТИМУЛИРУЮЩИЕ ФАКТОРЫ (КСФ). Регулируют деление, дифференцировку костно-мозговых стволовых клеток и предшественникон клеток крови. Стимулируют дифференцировку и функциональную активность некоторых клеток вне костного мозга.

Механизм действия:

1. Гранулоцитарный КСФ (Г-КСФ) продуцируется в основном макрофагами, а также фибробластами. Стимулирует деление и дифференцировку стволовые клеток, в некоторой степени усиливает активность нейтрофилов и эозинофилов.

2. Макрофагальный КСФ (М-КСФ) вырабатывается моноцитами, в меньшей степени эндотелиальными клетками и фибробластами. Активирует пролиферации предшественников макрофагов в костном мозге.

3. Гранулоцитарно-макрофагальный КСФ (ГМ-КСФ) продуцируется макрофагами И Т-лимфоцитами, а также фибробластами и эндотелиоцитами. Стимулирует деление и дифференцировку предшественников гранулоцитов и макрофагов, активирует функцию макрофагов и гранулоцитов, пролиферацию Т-клеток. Участвует в стимуляции дифференцировки кроветворных предшестенников Е антигенпрезентирующие дендритные клетки.

Читайте также:  Воспаление во рту перегородка

ЗАЩИТНЫЕ БЕЛКИ ОСТРОЙ ФАЗЫ ВОСПАЛЕНИЯ

1. С-реактивный белок (СРБ). СРБ — это компонент неспецифического иммунного ответа, который встречается на ранних стадиях после проникновения антигена в организм.

Механизм действия:

¾ СРБ связывает полисахариды, присутствующие на поверхности многих бактерий, грибов и паразитов.

¾ СРБ присоединяется к мембранам микроорганизмов и поврежденным клеткам.

¾ Связанный СРБ способствует фагоцитозу путем активации каскада комплемента по классическому пути.

¾ Активация комплемента увеличивает разрушение связанных структур.

¾ СРБ также взаимодействует с иммуноглобулинами, связанными с лимфоцитами.

¾ СРБ способен активировать тромбоциты.

¾ Основное значение СРБ заключается в распознавании потенциально токсических веществ, образующихся при распаде собственных клеток организма, связывании их и затем детоксикации и удалении из крови.

2. Сывороточный амилоидный А компонент (СААК). Функционально СААК представляют собой небольшие аполипопротеины

Механизм действия:

¾ При развитии острой фазы воспаления СААК соединяются с ЛПВП.

¾ Далее СААК увеличивает связывание ЛПВП с макрофагами, которые могут затем поглощать холестерин и липидные осколки в местах некроза.

¾ Другой предполагаемой защитной ролью САА является ингибирование активации тромбоцитов, а также ингибирование кислородного «взрыва» в нейтрофилах, что предотвращает повреждение тканей кислородными продуктами.

3. α1-Антихимотрипсин. α1-Антитрипсин (α1-антипротеазный ингибитор, α1-АПИ). Составляет 90% общей антипротеолитической активности плазмы.

Механизм действия:

¾ Является ингибитором ряда протеаз (коллагеназы, катепсина, химазы, эластазы), продуцируемых лейкоцитами.

¾ α1-АПИ подавляет активность химотрипсина, трипсина, бактериальных и гранулоцитарных протеиназ.

¾ α1-АПИ является важным регулятором и контролером активности эластазы, коллагеназы в месте воспаления, выход которых из-под контроля способно привести к деструкции окружающих тканей.

4. Фибриноген. Относится к классу β-глобулинов.

Механизм действия:

¾ Наиболее значимой функцией фибриногена является участие в формировании тромба и остановке кровотечения. Под влиянием тромбина он превращается в фибрин. Повышенная концентрация фибриногена и фибрина в поврежденной ткани усиливает миграцию в нее гранулоцитов.

¾ В интерстициальной ткани фибриноген формирует основу для роста фибробластов и гистиоцитов, что важно для восстановления поврежденной ткани.

¾ Продукты деградации фибриногена и фибрина обладают противосвертывающей активностью, способны подавлять процесс формирования фибрина. Это способствует восстановлению кровотока в поврежденной ткани и усиливает его дренажные функции.

¾ Фибриноген способен действовать как опсонины, а также вызывать склеивание микроорганизмов.

¾ Фрагменты фибриногена – фибринопептиды А и В проявляют противовоспалительные свойства.

5. Гаптоглобин (Гб). Составляет около 25% общей массы глобулинов.

Механизм действия:

¾ Основной функцией белка является связывание гемоглобина, растворенного в плазме, с образованием комплекса гемоглобин-гаптоглобин, что обеспечивает сохранение железа в организме.

¾ Гаптоглобин удаляет свободный гемоглобин из зоны воспаления.

¾ Обладает антипротеазной и пероксидазной активностью, что является важным для инактивации вторгшихся микроорганизмов.

¾ Гб участвует в детоксикации организма. Он способен образовывать комплексы с различными белковыми и небелковыми веществами, образующимися при распаде тканей и гибели клеток. Способен инактивировать протеиназы, выделяемые гранулоцитами в межклеточное пространство при их гибели .

6. α-Гликопротеин (α-Гп). Белок плазмы крови, содержащий в своем составе около 40% углеводов.

Механизм действия:

¾ Полисахаридный компонент обуславливает его способность взаимодействовать с клеточными мембранами многих клеток.

¾ α-Гп проявляет антипротеазную способность и активность в подавлении агрегации тромбоцитов.

¾ ГП проявляет умеренные иммунодепрессивные свойства. Способен подавлять реактивность Т-клеток, антителообразование, хемотаксис, моноцитоз, фагоцитоз.

7. Церулоплазмин (Цп).Относится к классу α2-глобулинов.

Механизм действия:

¾ Является основным транспортером меди.

¾ Цп способен к некаталитическому удалению свободных радикалов кислорода из тканей, способен окислять ароматические фенолы, полиамины, железо.

¾ Цп также участвует в удалении железа, высвобождающегося из гемоглобина эритроцитов в месте воспаления, таким образом не допуская поглощение этого элемента микробами. Участвует в обмене ряда биологически активных веществ, например, серотонина, аскорбиновой кислоты.

8. Лейкотриены (ЛТ). (LT) являются производными полиеновых кислот.

Механизм действия:

¾ Лейкотриены принимают участие в воспалительных реакциях, выступая в роли медиаторов аллергических реакций немедленного типа, которые появляются в ответ на аллерген.

¾ Является мощным активатором нейтрофилов: повышает их миграционную активность, фагоцитоз, адгезию на эндотелии сосудов, индуцирует дегрануляцию

Дата добавления: 2016-12-03; просмотров: 2125 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник