Биохимические изменения в зоне воспаления это

Биохимические изменения в зоне воспаления это thumbnail

Вне зависимости от причин, приводящих к развитию воспаления, и без специального разделения по локализации его в отдельных тканях речь идет о последствиях повреждения клеток. Эти последствия заключаются в высвобождении соединений, ранее находящихся в клетках, в основное вещество соединительной ткани, где содержатся фибриллярные компоненты и практически все белки крови. Следствием этого является усиление микроциркуляции, которое обусловлено действием биогенных аминов и продуктов распада некоторых тканевых элементов. Одним из первых процессов при этом является высвобождение гистамина и гепарина из гранул тучных клеток. Действие этих соединений проявляется уже через несколько секунд после нанесения повреждения, что подтверждает их предварительный синтез и депонирование. Гистамин приводит к вазодилятации и повышению проницаемости сосудистой стенки. Гепарин связывает основные белки, вышедшие из разрушенных клеток, которые оказывают негативное влияние на структуру клеточных мембран.

Вместе с указанными соединениями высвобождается и серотонин, также оказывающий влияние на сосуды. Одновременно происходит гидролитическое расщепление белков гидролазами, вышедшими из лизосом поврежденных или погибших клеток. Из α2-глобулинов крови образуются кинины, которые пролонгируют повышенную проницаемость сосудов. Гистамин и серотонин сравнительно быстро инактивируется и поэтому время их действия ограничено. Повышенная проницаемость капилляров приводит к тому, что в очаг воспаления начинают выходить другие компоненты крови, прежде всего фибриноген и тромбоциты, а затем иммуноглобулины и части комплемента. Фибриноген принимает участие в образовании фибрина, что, с одной стороны, приводит к ограничению очага воспаления, а с другой, способствует агрегации тромбоцитов, полимеризации фибрина и возникновению тромбов. Следствием тромбоза являются нарушения микроциркуляции с последующей гипоксией, что приводит к дальнейшим повреждениям клеток в очаге воспаления. Метаболическим результатам этого является изменение аэробного метаболизма клеток на анаэробный, повышенная наработка лактата и снижение значения рН. Тромбоциты активируются, взаимодействуя с молекулами коллагена, выделяют новые порции серотонина.

Из арахидоновой кислоты, образующейся при гидролизе фосфолипидов цитоплазматических мембран, синтезируются простагландины, которые в дальнейшем регулируют течение воспалительной реакции. Они повышают проницаемость стенок сосудов и чувствительность болевых рецепторов. При длительном течении воспалительного процесса макрофаги продуцируют простагландины, которые способны целенаправленно ингибировать синтез некоторых медиаторов.

Вместе с высокомолекулярными компонентами плазмы крови в очаг воспаления поступают вода, ионы, глюкоза и другие низкомолекулярные соединения. Вода обычно находится в динамическом равновесии с элементами соединительной ткани, и её перемещение происходит обычно быстро и всегда обратимо. При воспалении необходимо учитывать дезинтеграцию высокомолекулярных компонентов основного вещества соединительной ткани, с повышением осмотического давления в этом пространстве и перемещением воды, приводящим к образованию воспалительного отека. Длительность существования отека зависит от устранения причин воспаления. В той или иной степени вода, накапливающаяся в очаге воспаления, уменьшает концентрацию соединений, обладающих повреждающим действием, и тем самым снижает интенсивность этого действия. Вместе с водой в очаг воспаления проникают белки, являющиеся ингибиторами гидролаз, прежде всего это α1-антитрипсин и α2-макроглобулин. В плазме крови их количество при воспалении увеличивается.

Кроме ингибиторов протеаз, из плазмы в очаг воспаления выходят и молекулы иммуноглобулинов, которые обуславливают прохождение в нем иммунных реакций. При микробных инфекциях, да и при других условиях, их эффект связан с действием комплемента, лизирующим чужеродные клетки.

Затем в очаг воспаления активно (хемотаксически) проникают нейтрофильные лейкоциты и макрофаги (для каждого из них существуют различные хемотаксические факторы). Порядок действия этих клеток определяется величиной рН очага воспаления. При низких значениях рН (в начале воспаления) преобладают нейтрофилы, а макрофаги приходят в зону воспаления только когда значения рН смещается до нейтральных. Они синтезируют ферменты, разрушающие структуры, находящиеся в зоне воспаления (колагеназа – коллаген, эластаза – эластин, гиалуронидаза – основное вещество соединительной ткани, активатор плазмина – фибрин и т.д.), и тем самым облегчают для себя подход к клеткам или их ферментам, которые должны быть фагоцитированы. Фагоцитоз и разрушение фагоцитированных структур является главными функциями макрофагов. Они освобождают область воспаления от продуктов распада клеток, что является основной предпосылкой для развития следующей фазы воспаления – пролиферации.

При воспалении метаболизм изменяется не только в зоне повреждения, но и в других органах и тканях. В свою очередь, общие изменения отражаются на течении воспалительного процесса в очаге. Главным органом, реагирующим на повреждение тканей с помощью производимых в нем на экспорт продуктов, является печень. Белки, синтезирующиеся в печени и выводящиеся в кровоток, определяют в известной степени течение воспалительного процесса (фибриноген, кинины, компоненты комплемента). Появление некоторых из них или изменение их содержания в кровотоке рассматривается как указание на наличие очага воспаления в организме. Это и обусловило их общее название – белки острой фазы (реактанты острой фазы).

Белки острой фазы

К ним относятся белки, представляющие различные функциональные системы:

1. Белки с иммуномодулирующими свойствами – С-реактивный белок (СРБ), α1-гликопротеин (орозомукоид).

2. Ингибиторы протеаз (α1-антитрипсин, антихимотрипсин и др.).

3. Белки свертывания крови (фибриноген, фактор VIII).

4. Белки комплемента (С3, С4).

5. Транспортные белки (гаптоглобин, ферритин, церуло- плазмин).

Кислый α1-гликопротеин (орозомукоид) – один из главных компонентов мукопротеидной фракции крови. В физиологических его концентрация в крови составляет 0,2-0,4 г/л. Эта концентрация быстро увеличивается (в течение нескольких часов после начала воспаления) и достигает максимума на 2-3 день. Кислый α1-гликопротеин синтезируется гепатоцитами и на его повышенный синтез во время воспаления оказывает влияние альтерация ткани. Повышенное содержание этого белка в крови отмечается в течение всего времени повреждения, как бы длительно оно ни было. Разрушение его также происходит в печени посредством отщепления концевой сиаловой кислоты. Пусковой механизм синтеза α1-гликопротеина на молекулярном уровне неизвестен. Биологическая функция этого белка не установлена, хотя экспериментально показана его способность в зоне воспаления внесосудисто связываться с молекулами тропоколлагена и способствовать тем самым фибриллогенезу. На более поздних стадиях воспаления эту функцию принимают на себя гликопротеины, синтезируемые фибробластами.

α1- антитрипсин. Это α1-гликопротеин с молекулярной массой 50000 дальтон, содержащий 12 % углеводов. Концентрация его в норме в плазме крови составляет 2-4 г/л, синтезируется гепатоцитами. При воспалительном процессе синтез быстро нарастает и достигает максимума за 2-3 дня. Главное свойство антитрипсина – способность ингибировать протеазы путем образования стехиометрических комплексов (1:1). Наиболее активен по отношению к трипсину, химотрипсину, плазмину, тромбину и протеазам, высвобождающимся при распаде лейкоцитов или чужеродных клеток. На его долю приходится около 88% всей антитрипсиновой активности крови.

Читайте также:  Воспаление под правой челюстью

С-реактивный белок. В условиях нормы содержится в количестве, составляющем менее 0,01 г/л в плазме, мигрирует при электрофорезе с β-глобулинами. Концентрация С-реактивного белка во время воспаления быстро увеличивается в 20 и более раз, достигая максимума через 50 часов. Как и предыдущие белки синтезируется гепатоцитами.

С клинической точки зрения представляет интерес классификация белков острой фазы по степени увеличения их концентрации. По этому признаку выделяют:

1. Главные реактанты острой фазы – их концентрация увеличивается в 100-1000 раз в течение 6-12 часов:

— С-реактивный белок

— амилоидный белок А сыворотки крови

2. Умеренное увеличение концентрации (в 2-5 раз) в течение 24 часов:

— орозомукоид

— α1-антитрипсин

— гаптоглобин

— фибриноген

3. Незначительное увеличение концентрации (на 20-60%) в течение 48 часов:

— церулоплазмин

— С3-комплемент

— С4-комплемент

Общим моментом для всех белков острой фазы является их синтез гепатоцитами и общая динамика их концентрации в крови – она, в определенной мере, обратима динамике концентрации альбумина. Вместе с тем, это функционально различные белки отличающиеся по своим антигенным свойствам. Количественный анализ показал, что подъем концентрации «реактантов острой фазы» на ранней стадии воспаления соответствует снижению концентрации альбумина. Если количество «реактантов» острой фазы увеличивается, повышается и онкотическое давление плазмы, что приводит к снижению синтеза и количества альбумина в сыворотке в пропорциональных соотношениях.

ДЕФЕКТЫ БЕЛКОВ НЕФЕРМЕНТНОЙ ПРИРОДЫ

К настоящему времени идентифицировано более 200 протеинопатий белков неферментной природы – белков плазмы крови, биологических жидкостей и тканей. Отдельные из них могут отсутствовать полностью или частично, в связи с чем нарушаются связанные с ними функции. Как правило, нарушение продукции того или иного неферментативного белка проявляется преимущественно изменением работы одной из функциональных систем организма. В отдельных случаях – это множественные дефекты, включающие в себя не только отсутствие или дефицит неферментативного белка, но нередко и белка со свойствами энзима. По системам, в нарушении состояния которых важную роль играют врожденные дефекты неферментативных белков, эти протеинопатии можно подразделить следующим образом:

1. Дефекты индивидуальных белков плазмы крови.

2. Дефекты белков системы свертывания крови.

3. Дефекты гемоглобина (гемоглобинопатии).

4. Дефекты белков системы комплемента.

5. Нарушения белков калликреин-кининовой системы.

Патологические изменения содержания общего белка в сыворотке крови

Концентрация общего белка сыворотки крови у здоровых взрослых людей составляет 65-85 г/л, в плазме эта величина в среднем больше на 3 г/л за счет фибриногена и белков свертывания крови. Изменение содержания белка в сыворотке крови может быть относительным (вследствие колебания объема внутрисосудистой жидкости) и абсолютным (связанным с нарушением поступления, синтеза и выведения белка).

Гиперпротеинемия – увеличение концентрации общего белка > 85 г/л. Абсолютная гиперпротеинемия чаще всего обусловлена за счет увеличением γ-глобулиновой фракции и наблюдается при: ревматоидном артрите, коллагенозах, миеломной болезни, бронхоэктатической болезни. Относительная гиперпротеинемия наблюдается при гипогидратации организма (рвота, понос), венозном стазе.

Гипопротеинемия – снижение концентрации общего белка ниже 65 г/л. Абсолютная гипопротеинемия наблюдается при: недостаточном поступлении белков с пищей (голодание), потерях белка через кожные покровы (ожоги), с мочой (гломерулонефрит, нефротический синдром), через желудочно-кишечный тракт (гастроэнтеропатии), нарушениях синтеза белка (гепатиты, цирроз печени), повышенном катаболизме белков (септические состояния, раковая кахексия). Снижение общего белка в сыворотке крови ниже 45 г/л при концентрации альбумина ниже 20 г/л является опасным для жизни.

Первичные гипопротеинемии

Эти состояния обусловлены генетическими дефектами, приводящими к полному прекращению или замедлению синтеза определенных белковых фракций, а также синтезу белков с измененными свойствами. К ним относятся:

Анальбуминемия – вызвана мутацией гена, контролирующего синтез альбумина в гепатоцитах. Клинически проявляется повышенной утомляемостью, отеками стоп, умеренной артериальной гипотонией. На протеинограмме отсутствуют или определяются в малом количестве (до 3%) альбумины. Процентное содержание α и β-глобулинов пропорционально увеличивается (до 30 %), умерено повышается количество γ-глобулинов.

Бисальбуминемия – качественная аномалия сывороточных альбуминов генетического характера (семейная аутосомно-рецессивная аномалия, мутация гена, контролирующего синтез альбуминов). Протекает почти бессимптомно и обнаруживается при исследованиях массового характера или по другому поводу. Наличие бисальбуминемии констатируется по характерной электрофореграмме.

Вторичные гипопротеинемии

В зависимости от происхождения вторичные гипопротеинемии могут быть обусловлены следующими причинами:

1. Недостаточностью белка в питании, нарушением переваривания и всасывания белков в ЖКТ.

2. Врожденными дефектами переваривания и всасывания белков.

3. Нарушением синтеза белков (например при поражении печени).

4. Усиленной потерей белка (острые и хронические кровопотери, большие раневые поверхности, обширные ожоги, потери через желудочно-кишечный тракт).

5. Ускоренным распадом белков (гипертиреоз, острые инфекции).

6. Повышенным использованием белков, особенно альбуминов (послеоперационные состояния, лейкемия).

Диспротеинемия – изменение качественного и количественного состава отдельных белков сыворотки при нормальном уровне общего белка.

Рекомендуемые страницы:

Читайте также:

Источник

В случае воспаления метаболизм тканей имеет как количественные, так и качественные особенности.

Количественные особенности обмена веществ при воспалении

Количественные особенности особенно заметны в начале воспаления – это усиление обмена веществ, которое Саде назвал «метаболическим огнем». В этот период сильно усиливаются процессы гидролиза (гликолиз, протеолиз, липолиз) и окислительные процессы (из-за артериальной гиперемии). В воспаленных тканях увеличивается утилизация кислорода. 

По мере прогрессирования нарушений периферического кровообращения (венозная гиперемия, застой) интенсивность окислительных процессов снижается, и в воспалительных тканях начинают проявляться качественные изменения обмена веществ.особенности – процессы окисления не проходят полностью, не заканчиваются выделением СО2. Процессы гидролиза преобладают над процессами окисления. 

Основные причины этих метаболических нарушений – повреждение митохондрий – цикл Кребса, биологическое окисление и связанные с ним нарушения окислительного фосфорилирования – и лизосомное повреждение (лизосомы выделяют около 40 гидролитических ферментов).

Схема цикла Кребса

Также вызывают метаболические нарушения остатки бактерий и ферменты. Например, многие бактерии продуцируют гиалуронидазу, которая деполимеризует гиалуроновую кислоту, разжижает соединительную ткань и увеличивает проницаемость сосудов. Коллагеназа приводит к разрушению волокон соединительной ткани. Стрептококковая дезоксирибонуклеаза и рибонуклеаза расщепляют нуклеиновые кислоты и активируют протеолитические ферменты.

Читайте также:  Воспаление вокруг родинки фото

Из-за венозной гиперемии, застоя и повреждения митохондрий в тканях остается мало кислорода. В отсутствие кислорода активность ферментов цикла Кребса снижается, и во время этого цикла (особенно в центре воспалительных очагов) образуется недостаточно CO2, но промежуточные продукты метаболизма (пировиноградная кислота, α-кетоглутаровая кислота, яблочная кислота, янтарная кислота) накапливаются из пировиноградной кислоты.

Если в присутствии монойодацетата ферменты гликолиза подавлены, воспаление слабое. Белковый обмен усиливают протеолитические процессы. Они активируются при повреждении лизосом и ядер нейтрофилов крови, макрофагов и воспаленных паренхиматозных клеток, а также дезоксирибонуклеазами и рибонуклеазами. Усиленный протеолиз приводит к пролиферации нуклеотидов, полипептидов и аминокислот.

В воспалительных условиях, когда в тканях не хватает кислорода, дезаминирование (нормальный путь окисления аминокислот) снижается, а декарбоксилирование усиливается. В этих условиях, а также в результате дегрануляции тучных клеток в тканях накапливается гистамин.

Для жирового обмена характерно усиление липолиза. В результате увеличивается количество жирных кислот и продуктов их переваривания. Поскольку интенсивность цикла Кребса уменьшается, молекулы ацетил-СоА начинают конденсироваться и взаимодействуют друг с другом с образованием ацетилуксусный-КоА, который, в свою очередь, дает кетон вещество уксусной кислоты (5-оксимасляной кислоты и ацетона).

Из – за высокого потребления O2 (особенно в артериальной гиперемии), но количество выделяемого СО2 намного меньше, тогда частота дыхания также уменьшается.

Описанные процессы диссимиляции (катаболизма) преобладают в остром периоде воспаления. В это время некоторые продукты патологически измененного обмена веществ (медиаторы воспаления) сами влияют на развитие процесса. 

В более поздний период воспаления, когда тенденции к восстановлению тканей уже проявляются, на первый план выходят процессы синтеза, а именно анаболические – увеличивается синтез ДНК и РНК. Эти процессы особенно активны в гистиоцитах и ​​фибробластах. 

В этих клетках возрастает активность окислительно-восстановительных ферментов, активно происходит биологическое окисление и окислительное фосфорилирование. В результате увеличивается образование макроэргических соединений и обеспечивается повышенная функциональная активность гистиоцитов и фибробластов.

Биологически активные вещества 

Биологически активные вещества играют очень важную роль в патогенезе воспаления, поэтому кратко опишем основные из них.

Гистамин образуется декарбоксилазой из гистидина. Много гистидина и гистамина находятся в коже, легких, симпатических нервных волокнах. 

  • Гистамин расщепляется метилтрансферазой. Этот фермент в изобилии присутствует в органах, на которые действует гистамин (легкие, кожа, желудочно-кишечный тракт). 
  • Второй путь расщепления гистамина – это окислительное дезаминирование гистамином (диаминоксидазой), которое обнаруживается в основном в кишечнике, печени и почках. 

В клетках (лейкоцитах, тромбоцитах, тучных клетках и эндотелиальных клетках) гистамин присутствует в больших количествах в связанной форме. В тучных клетках всегда с гепарином.

Гистамин является биологически очень активным веществом. Понижает тонус прекапиллярных сфинктеров, расширяет сосуды в зоне микроциркуляции, сужает крупные сосуды. В то же время гистамин сокращает сократительные вещества эндотелиальных клеток и увеличивает поры между этими клетками. Таким образом, гистамин увеличивает проницаемость стенки кровеносных сосудов, и белковые жидкости могут выходить в интерстициальное пространство (IST). Больше всего увеличивается проницаемость стенки мелких вен. Гистамин также вызывает сокращение гладких мышц.

Серотонин (5-окситриптамин) образуется из триптофана специфической гидроксилазой. Серотонин расщепляется неспецифической моноаминоксидазой. Образуется индоксиуксусная кислота, которая способствует пролиферации клеток. Серотонин содержится в тучных клетках и тромбоцитах (из которых гистамин высвобождается в процессе свертывания крови). 

Как и адреналин, серотонин повышает кровяное давление, но мало влияет на периферическое сопротивление. В отличие от адреналина серотонин вызывает бронхоспазм. В тканях серотонин выделяется алкалоидом резерпином. Серотонин также увеличивает проницаемость сосудов, но он делает отек в 200 раз более активным, чем гистамин.

Гранулы тучных клеток содержат гистамин, гепарин и серотонин. Гистамин и гепарин связаны с ферментом химазой. Кроме того, гепарин является ингибитором этого фермента и защищает гранулы от автолиза. Гистамин относительно слабо связан в этом комплексе и может высвобождаться так называемыми освободителями гистамина, веществами, которые более тесно связаны с гепарином, чем гистамином (натрий, кальций, водород и другие ионы). Следовательно, в условиях гипоксии и ацидоза количество гистамина увеличивается и его действие становится более выраженным.

Дегрануляция тучных клеток может быть вызвана воздействием тепла, ультрафиолетового и ионизирующего излучения, солевых растворов, кислот, катионных белков, синтетических полимеров и мономеров, поверхностно-активных веществ. 

Дегрануляция тучных клеток

Дегрануляция всегда происходит за счет взаимодействия антигена и антител. Выброшенные гранулы фагоцитируются макрофагами или растворяются в межслитковой жидкости, а вазоактивные вещества переносятся лимфой или кровотоком в организм. Гистамин и серотонин расширяют кровеносные сосуды и увеличивают проницаемость их стенок, в то время как гепарин увеличивает проницаемость капилляров, препятствуя образованию фибрина.

Гипотензивные полипептиды – хинины

Хининовая система или так называемые гипотензивные полипептиды также называют местными (тканевыми) гормонами, потому что они не вырабатываются эндокринными железами и действуют в основном локально. Хинины обнаружены в крови, лимфе, моче, поджелудочной железе, слюнных железах, головном мозге, тонком кишечнике и т. д. Два хинина: калидин и брадикинин были изучены на людях. 

Хинины в плазме крови и тканях образуются из неактивных α2-глобулинов (кининогенов) ферментом каликреином. Каликреины тканей (калидиногеназы) и каликреины плазмы (брадикининогеназы) происходят из прекалликреинов. Их переход в каликреины облегчается реакциями антиген-антитело, температурами выше 45 ° C, кислыми изменениями pH, лизосомальными ферментами, катепсинами, трипсином, фактором свертывания XII (фактор Хагемана), фибринолизином (плазмин). 

Хининогены сначала образуют калидин. После расщепления аминопептидазы образуется брадикинин. Брадикинин – сильнейшее сосудорасширяющее средство, увеличивающее проницаемость капилляров в 10-15 раз сильнее, чем гистамин. Брадикинин стимулирует сокращение миокарда и, таким образом, увеличивает частоту сердечных сокращений, сердечный выброс и коронарное кровообращение, а также усиливает почечную клубочковую фильтрацию и выведение ионов натрия и калия. 

Хинины расслабляют гладкие мышцы артериол и венозных стенок, тем самым расширяя эти кровеносные сосуды и снижая скорость их кровотока. В то же время они значительно увеличивают проницаемость стенки сосуда и способствуют эмиграции лейкоцитов из кровеносных сосудов.

Как и другие медиаторы, хинины вызывают воспаление, различные типы шока, аллергические реакции, артрит, инфаркт миокарда, инсульт, острый панкреатит и другие заболевания. Действуя на местном уровне,

Читайте также:  Высокая активность иммунного воспаления

Хинины вместе с системами тромбина и плазмина (фибринолизина) образуют так называемую систему факторов Хагемана, которая активируется при повреждении тканей. Свертывание крови и фибринолиз являются результатом системы факторов Хагемана.

Тромбоксан А2 и тромбоксан В2

Тромбоксан А2 и тромбоксан В2 – высоко биологически активные вещества. Тромбоксан А2 был выделен из тромбоцитов с очень короткой продолжительностью действия (период полураспада 32 с). Это вещество активно участвует в удалении медиаторов из тромбоцитов и других клеток, а также в агрегации тромбоцитов.

Система комплемента

Система комплемента состоит из 9 различных белков, обозначенных Ci, C2 и т. д. Она активируется комплексом антиген-антитело, а также эндотоксинами, и образуются продукты, которые активно участвуют в патогенезе воспаления. Наиболее активные компоненты системы комплемента – C3a (анафилатоксин I), C5a (анафилатоксин II) и C5,6, C3a – гемотаксический фактор, который увеличивает проницаемость сосудистой стенки и способствует дегрануляции тучных клеток. У Csa такое же и даже более сильное действие.

Также присутствуют в тканях ингибиторы C3a и Csa. Если дефицит этих ингибиторов передается по наследству или приобретается, активность системы комплемента может значительно возрасти, и воспалительный процесс может стать тяжелым. Было показано, что ингибиторы комплемента подавляют эмиграцию лейкоцитов.

Система комплемента также участвует в фагоцитозе и высвобождении лизосомальных ферментов и в конечном итоге вызывает иммунологический лизис клеток – смерть. Система комплемента вместе с ионами магния является частью системы пропердина, вызывающей микробный лизис в крови.

Таким образом, в случае воспаления активируются тесно связанные системы хинина, комплемента, свертывания крови, фибринолиза и другие.

Простагландины

Простагландины (PG) были обнаружены примерно в 1930 году в семенниках и сперме различных животных. Первоначально считалось, что эти биологически активные вещества происходят из простаты, поэтому их назвали простагландинами.

Теперь известно, что они являются высокоактивными фосфолипидами, образованными в клеточных мембранах из арахидоновой кислоты под действием простагландинсинтетазы. Ферменты циклооксигеназа и липоксигеназа зависят от образования PG или лейкотриенов из арахидоновой кислоты. PG присутствует во всех органах.

Простагландины

Различают несколько типов простагландинов (Ei, E2, F, I, D, A, G). У людей было обнаружено 13 простагландинов, наиболее активными из которых являются простагландины E, F и G. Действие PGE и PGF часто противоположно.

Простагландины контролируют диффузию веществ через клеточную мембрану (часть простагландина активирует аденилатциклазу и увеличивает количество цАМФ), а также регулируют активность гладких мышц и процессы секреции.

Простагландины действуют в основном локально, потому что ферментные системы мешают их общей функции. Общая эффективность наблюдается, если деградация PG ингибируется или накоплено слишком много PG. Простагландины обладают моделирующим действием – они стимулируют слабые и подавляют избыточные функции.

При воспалении особенно повышены уровни PGE2, PGE и PGI2. Эти простагландины сильно способствуют расширению сосудов, а также увеличивают проницаемость сосудистой стенки и лизосомальной мембраны, тем самым способствуя воспалению. Эти простагландины также стимулируют синтез ДНК и пролиферацию тканевых лимфоцитов. Лимфоток стимулируется в меньшей степени. С другой стороны, также наблюдалась защитная противоязвенная активность клеток простагландинов (PGE2).

Медиаторы воспаления

Помимо простагландинов, липоксигеназа арахидоновой кислоты также продуцирует лейкотриены, такие как медленно действующее вещество анафилаксии (медиатор аллергического воспаления). В случае аллергического воспаления из тканей выделяется вещество Р (проницаемость), которое увеличивает проницаемость стенки сосуда.

Медиаторы воспаления

Система адениловой кислоты содержит производные аденина (аденозин, AMF, ADF), и их количество в воспаленных тканях значительно увеличено. Эти вещества способствуют лейкоцитозу, эмиграции лейкоцитов и фагоцитозу, а также, среди прочего, увеличивают проницаемость сосудистой стенки.

Фермент клеточной мембраны аденилилциклаза катализирует переход АТФ в аденозин-3′-5 ‘- (циклический) монофосфат (цАМФ) и пирофосфат. Обычно клетки и биологические жидкости содержат очень мало cAMF. Он участвует в гуморальной регуляции – это промежуточный член между гуморальным рецептором клетки и внутриклеточными процессами. 

В случае повреждения клетки увеличивается активность аденилциклазы и снижается ресинтез АТФ, поэтому количество цАМФ в поврежденной клетке увеличивается и стимулируются процессы регенерации. Печень играет ключевую роль в эвакуации и гидролизе цАМФ из плазмы крови. При заболевании печени эти функции снижены.

АМФ подавляет дегрануляцию лизосом и высвобождение лизосомальных медиаторов, тем самым подавляя дальнейшее развитие воспаления. Адреналин и норадреналин оказывают ингибирующее действие на воспаление через цАМФ.

К эндогенным медиаторам воспаления также относятся лизосомальные компоненты (катионные белки, кислотные и нейтральные протеазы) и продукты активности лимфоцитов – фактор, препятствующий миграции лейкоцитов, гемотаксический фактор, митогенный фактор и т. д. Большинство лизосомальных медиаторов высвобождаются из нейтрофилов и макрофагов. 

В зависимости от места их образования, воспалительные посредники делятся на две группы: 

  • медиаторы, образующиеся в клетках;
  • «плавающие» медиаторы, образованные в жидкостях организма, главным образом, в крови. 

В первую группу входят вазоактивные амины (гистамин, серотонин), лизосомальные ферменты, катионные белки и др. Гистамин и серотонин присутствуют в клеточных гранулах, поэтому в случае повреждения клеток (тучных клеток, базофилов, тромбоцитов) они появляются первыми (в течение нескольких минут) в месте воспаления. 

Однако запас вазоактивных аминов быстро истощается, поскольку эти вещества расщепляются, и вазоактивные амины исчезают из очага воспаления. Поэтому вазоактивные амины называют медиаторами короткого действия. Позже, когда активируется система калихреин-хинин, образуются калидин и брадикинин, а еще позже – простагландины. Они являются медиаторами пролонгированного действия и требуют образования ферментных систем.

Ко второй группе («плавающих») медиаторов относятся фактор Хагемана, система комплемента и тромбоксана, фибринопептиды и др.

Помимо медиаторов воспаления, вызывающих воспалительные реакции, различают и модуляторы воспаления (повреждения). Они не вызывают напрямую воспалительных реакций, но способны усиливать или уменьшать их. Такие эффекты проявляются, например, в системах простагландинов, тромбоксана и адениловой кислоты.

Продолжение статьи

  • Часть 1. Этиология и патогенез воспаления. Классификация.
  • Часть 2. Особенности обмена веществ при воспалении.
  • Часть 3. Физико – химические изменения. Роль нервной и эндокринной систем в развитии воспаления.
  • Часть 4. Изменения в периферическом кровообращении при воспалении.
  • Часть 5. Экссудация. Экссудат и транссудат.
  • Часть 6. Эмиграция лейкоцитов. Хемотаксис.
  • Часть 7. Фагоцитоз. Асептическое и острое воспаление.
  • Часть 8. Распространение. Последствия. Принципы лечения воспаления.

Поделиться ссылкой:

Источник