Что такое острофазное воспаление

Что такое острофазное воспаление thumbnail

Белки острой фазы воспаления — это неоднородная группа белковых субстанций, ко­торые интенсивно синтезируются при развитии острой фазы воспаления по принципу индуцибельной системы генной регуляции и являются важными компонентами врожденных механизмов резистентности.

Почти все острофазовые белки вы­рабатываются гепатоцитами под влиянием доиммуных цитокинов макрофагов (в первую очередь интерлейкин-6 [ИЛ-6], а также интерлейкин-1β [ИЛ-1β] и фактор некроза опухоли α [ФНО- α]).

Все острофазовые белки условно разделены на три группы (А, Б и В) и отличаются друг от друга по механизму действия. В груп­пу А включены церулоплазмин и С3-компонент комплемента. При развитии вос­паления их содержание в плазме крови возрастает на 25-50% от исходного. Группу Б составляют α1-антитрипсин, α1-антихимотрипсин, β2-макроглобулин, гаптоглобин и фибриноген. В острой фазе воспаления их уровень повышается в 2-3 раза. Перечисленные острофазовые белки играют протективную роль, максимально ограничивая самоповреждение при воспалении, обуславли­вая наиболее придельное, а значит, и экономное использование других факто­ров врожденной резистентности.

И наконец, в третью группу включены С-реактивный белок, ман­нозосвязывающий протеин, сывороточный белок амилоида А и интерлейкин-1β. Их уровень при воспалении увеличивается почти в 1000 раз. Такие разнород­ные белки объединены в единую группу, исходя из практических соображений, поскольку их содержание при воспалении резко возрастает, они используются на практике как лабораторные маркеры воспалительного процесса. Данные белки острой фазы задействованы в эффекторных механизмах. Из таких белков наиболее изученными являются С-реактивный белок и маннозосвязывающий белок. Оба фактора синтезируются гепатоцитами и обладают по крайней мере двумя свойствами, которые опре­деляют их противомикробную активность, — способностью к опсонизации и обеспечению активации комплемента.

Церулоплаз­мин относится к так называемым антинутриентам — эффективно связывает медь, предотвращая поступление этого микроэлемента в микроорганизм.

Сывороточный белок амилоида А

Сывороточный белок амилоида А используется для быстрого меха­нического заполнения дефектов, образованных вследствие некротических про­цессов при воспалении.

Многие острофазовые белки являются ингибиторами протеаз (например, α1-антитрипсин, α1-антихимотрипсин и β2-макроглобулин). Именно они инактивируют лизосомальные ферменты, высвобожденные из разрушенных клеток, нейтрализуют протеолитические энзимы, секретированные фагоцитами, а также обеспечивают корректную степень активации калликреин-кининовой системы и системы свертывания крови.

Гаптоглобин обеспечивает эвакуацию уцелевшего гемоглобина из очага воспаления.

Фибриноген при экссудации в периваскулярное пространство образует фибри­новые сгустки, составляющие преграду для быстрого распространения воспа­лительного процесса, а также выполняет функцию опсонина.

С-реактивный белок (рис. 3) является своеобразным прототипом ан­титела и имеет высокую тропность к фосфорилхолину, лецитину и подобным им молекулам, которые широко представлены среди поверхностных структур микроорганизмов. Такие же молекулы находятся и на собственных клетках, однако они надежно экранированы от распознавания. Связавшись с указан­ной молекулой, С-реактивный белок может выступать в роли опсонина, об­легчая распознавание инфекционного агента фагоцитами, или активировать систему комплемента по классическому пути. Дело в том, что данный фактор способен связывать Clq-компонент комплемента с последующим вовлечени­ем всего каскада и формированием мембранатакующих комплексов.

Известно, что содержание СРБ резко возрастает при аутоиммунной па­тологии (в частности, при системных заболеваниях соединительной ткани). Бытует ошибочное мнение, что СРБ способствует аутоагрессии, хотя в дейст­вительности он призван ограничивать ее. Установлено, что С-реактивный протеин совершает опсонизацию и обуславливает дальнейшее разрушение экстраклеточной ДНК и клеточного детрита, которые могут стать причиной аутоиммунной атаки (scavengerfunction). Кроме этого, СРБ осуществляет экра­нирование наиболее распространенных аутоантигенных детерминант соедини­тельной ткани (фибронектин, ламинин, поликатионные поверхности коллагена, липопротеины низкой и очень низкой плотности). Связываясь с этими лиганда­ми, СРБ выполняет роль своеобразного пластыря, прикрывающего аутоантигены от распознавания и презентации, или же обеспечивает их дальнейшее разруше­ние, что приводит к утрате антигенных свойств. Материал с сайта https://wiki-med.com

Маннозосвязывающий лектин

Маннозосвязывающий протеин (МСП) является лектином и взаимодействует с остатками маннозы на поверхности кле­точных стенок бактерий, опсонизируя их для фагоцитоза моноцитами (макрофаги как более зрелые клетки имеют мембран­ные маннозосвязывающие рецепторы). Данный протеин работает вместе с так на­зываемыми лектин-ассоциированными протеазами 1 и 2. Присоединение этого фактора к микробным лигандам активирует протеазы, которые расщепляют С2- и С4-компоненты комплемента. Продукты расщепления — фрагменты С2а и С4Ь — формируют СЗ-конвертазу, которая инициирует дальнейший молекулярный каскад комплемента. Таким образом, комплекс маннозосвязы­вающего протеина и его лектин-ассоциированных протеаз является аналогом Cl-компонента комплемента. Но при этом активация комплемента происхо­дит без участия иммунных комплексов, а значит, начинается сразу же после поступления инфекционного агента в организм.

В последнее время установлена важная роль МСП в аутоиммунных реакци­ях. Низкая экспрессия этого белка может рассматриваться как фактор риска СКВ, что связано с нарушением клиренса иммунных комплексов, которые об­разуются при любой инфекции. С другой стороны, МСП играет ведущую роль в аутоагрессии при ревматоидном артрите (РА). Известно, что одной из при­чин иммунных расстройств при РА является синтез дефектного IgG, который не содержит остатка галактозы. Это приводит к оголению N-ацетил глюкозаминовых групп, которые распознаются МСП как чужеродные, что вызывает активацию комплемента и аутоповреждение.

Источник

Фагоцитоз – это способность определенных клеток (фагоцитов) удерживать и переваривать плотные частицы. Это явление было открыто И. Мечниковым.

Фагоцитоз осуществляется микрофагами (нейтрофилами) и системой мононуклеарных макрофагов.

Мононуклеарные макрофаги

Система (MMS) включает следующие элементы:

  • промоноциты (костный мозг);
  • моноциты (кровь);
  • тканевые макрофаги;
  • гистиоциты соединительной ткани;
  • печеночные клетки Куппера;
  • легочные альвеолярные макрофаги;
  • свободные и фиксированные макрофаги лимфатической ткани;
  • плевру и перитонеальные макрофаги. 

Клетки мононуклеарной системы объединяет общее происхождение гемопоэтических клеток и саморегуляция. 

Моноцитопоэз

Моноцитопоэз – это стимулирующий фактор колонии фибробластов и фактор роста макрофагов, но он же подавляет (отрицательная саморегуляция) интерферон фибробластов и лейкоцитов и т. д. 

Процесс фагоцитоза делится на четыре стадии: 

  • Приближение. 
  • Адгезия.
  • Оседание;
  • Стадия пищеварения.

Фаза приближения

Фагоцит приближается к объекту – бактериям, мервому клеточному элементу, инородному объекту. При движении под действием хемотаксиса цитоплазма фагоцита образует удлинения (псевдоподии).

Адгезия

Способствует образованию аминополисахаридов на поверхности фагоцитов и перекрытию фагоцитарного объекта белками сыворотки, особенно иммуноглобулинами. Последний механизм по сути является опсонизацией – бактерии и поврежденные клетки перекрываются с IgM, IgG и компонентами комплемента (C3, C5 и др.), что облегчает адгезию к фагоциту. 

Адгезия

Поверхность фагоцита заряжена отрицательно, поэтому адгезия лучше, если объект, подлежащий фагоцитозу, заряжен положительно. Менее фагоцитарны отрицательно заряженные объекты, такие как опухолевые клетки.

Оседание

Этап фагоцитации объекта – путь инвагинации. Сначала фагоцит образует углубление, а затем фагосому – вакуоль, содержащую объект, подлежащий фагоцитозу. НАДН-зависимая оксидаза в мембране фагоцитов активируется до образования фагосом; в результате O2 превращается в O 2 ~ (супероксид-анион) и образуется H 2 O 2. 

Эти продукты обладают бактерицидным действием, а также вызывают образование свободных радикалов. Под действием пероксидаз и каталаз H 2 O 2 расщепляется и высвобождается молекулярный O 2. Свободные радикалы и активный молекулярный O 2 действуют на мембрану фагоцита и объект, подлежащий фагоцитозу, активируя перекисное окисление липидов. 

Липопероксиды и свободные радикалы неустойчивы к лизосомным мембранам и способствуют высвобождению лизосомальных ферментов.

Стадия пищеварения

Лизосомы присоединяются к фагосоме, содержащей фагоцитарный объект. Эти органеллы содержат все ферменты, необходимые для расщепления углеводов, белков, жиров и нуклеиновых кислот. В еще неактивной форме они попадают в вакуоль фагоцитов. 

Пищеварительная вакуоль образуется при pH около 5,0, близком к оптимальному для лизосомальных ферментов. Активируются лизосомальные ферменты, и фагоцитарный объект постепенно переваривается. Во время стадии пищеварения проницаемость мембраны фагосомы увеличивается, содержимое фагосомы ускользает в цитоплазму, и микрофаг умирает (этому процессу способствует ацидоз). В этом случае фагоцитарный микроорганизм также может сохранять жизнеспособность.

Роль макрофагов в воспалительном процессе

Макрофаги начинают участвовать в фагоцитозе позже микрофагов. Макрофаги также более устойчивы к гипоксии и ацидозу, например, моноциты жизнеспособны даже при pH 5,5. 

В очаге воспаления макрофаги выполняют несколько функций:

  • Фагоцитируют бактериальные остатки, оставшиеся после эвакуации гноя и продуктов распада тканей – очищающая функция;
  • Высвобождают лизосомальные ферменты – гиалуронидазу, аминопептидазу и др;
  • Синтезируют компоненты системы комплемента и простагландины. 

Взаимодействие макрофагов и лимфоцитов при хроническом воспалении

В то же время воспаленная тканевая среда также стимулирует образование фибробластов и фиброцитов. Постепенно появляется новая, богатая сосудами грануляционная ткань.

Фагоцитоз стимулируется продуктами повреждения тканей – внутриклеточные белки, ферменты, полипептиды, аминокислоты, электролиты и т. д., биологически активными веществами, половыми гормонами, тироксином, адреналином, лихорадкой. Но подавляется недостатком стимулирующих факторов, глюкокортикоидов, гликолортикоидов, ацетилхолина, ацетилхолина. 

Фагоцитоз

Считается, что клетки плаценты и злокачественные опухоли способны секретировать вещество, которое подавляет функцию макрофагов, иммунологические реакции лимфоцитов и эмиграцию лейкоцитов, что приводит к значительному ослаблению или даже прекращению воспаления.

Объекты, которые фагоциты не могут переваривать, остаются в этих клетках в течение длительного времени и покрываются тонкой пленкой аминополисахаридов. После гибели фагоцитов они повторно фагоцитируются или выводятся из организма. Процесс, при котором фагоцит после переваривания высвобождает часть продуктов своего фагоцитоза в окружающую среду, называется экструзией.

Фагоцитоз – не единственный в организме механизм борьбы с воспалением. Большинство микроорганизмов погибают в условиях ацидоза, а также от ферментов, высвобождаемых во время гибели клеток и функционирования иммунокомпетентной системы. 

Нейтрофилы во внеклеточном пространстве секретируют катионные белки, которые могут убивать ферменты без ферментов и фагоцитоза. Таким образом, воспалительные очаги постепенно избавляются от микроорганизмов и мертвых клеток.

Асептическое и острое воспаление

Дальнейшее течение воспаления зависит от того, является ли воспаление асептическим или бактериальным.

В асептических воспалительных условиях, например, вокруг хирургического шва, инородного тела, стенка микрофагов (нейтрофилов) начинает формироваться в течение нескольких часов, достигая максимума в течение дня. 

Позже появляется следующий вал макрофагов, который достигает максимума через 2-3 раза. в день. Эмигрировавшие лейкоциты постепенно становятся неподвижными, больше не могут делиться и погибают в течение 3-5 дней. 2-3. на 5 сутки начинает формироваться стенка фибробластов, а на 5 сутки – соединительнотканная капсула.

Читайте также:  Антибиотики для воспаления печени

Таким образом, в случае острого воспаления патогенный агент в организме преобразует белки, которые участвуют в реакции антиген-антитело, медиаторы и модуляторы воспаления, систему фагоцитов и миграцию клеток. В результате заканчивается острое воспаление. Однако, если инфекционные агенты попадают в участок асептического воспаления, например, в результате травмы, это воспаление становится септическим (бактериальным) воспалением.

Бактериальные воспалительные состояния бактерий и токсинов, не вызывающие гиперемии, экссудации и эмиграции лейкоцитов. Между клетками воспаленных тканей и особенно вокруг кровеносных сосудов накапливается все больше и больше микрофагов. Лизосомы микрофагов содержат множество активных ферментов, и эти клетки также начинают процесс фагоцитоза. При пальпации воспаленная ткань в это время кажется плотной, поэтому это называется стадией воспалительной инфильтрации.

По мере прогрессирования воспаления лейкоциты и те тканевые клетки, которые претерпели необратимые изменения во время воспаления, погибают. В этих клетках высвобождаются лизосомальные ферменты, которые расщепляют тканевые белки, белковые и липидные комплексы и другие структуры. Это стадия гнойного размягчения воспаления.

Эти стадии наблюдаются, например, у пациентов с гнойным воспалением перикарда (фурункул), гнойным воспалением апокринных потовых желез (гидраденит) и гнойным воспалением соединительной ткани (флегмона). При вдыхании воспаленная ткань выглядит мягкой, с характерным раскачиванием – флюктуацией. Образуется замкнутое скопление гноя – абсцесс.

Гнойное воспаление перикарда

Гной разрывается в направлении наименьшего сопротивления (либо наружу, либо внутри тела). Если гной попадает в кровоток (пемия), в организме может развиться множество очагов гноя, но под действием микроорганизмов и токсических веществ – угрожающее общее заболевание (сепсис, септикопиемия). Поэтому важно диагностировать накопление гноя и обеспечить хирургический дренаж гноя наружу.

Продолжение статьи

  • Часть 1. Этиология и патогенез воспаления. Классификация.
  • Часть 2. Особенности обмена веществ при воспалении.
  • Часть 3. Физико – химические изменения. Роль нервной и эндокринной систем в развитии воспаления.
  • Часть 4. Изменения в периферическом кровообращении при воспалении.
  • Часть 5. Экссудация. Экссудат и транссудат.
  • Часть 6. Эмиграция лейкоцитов. Хемотаксис.
  • Часть 7. Фагоцитоз. Асептическое и острое воспаление.
  • Часть 8. Распространение. Последствия. Принципы лечения воспаления.

Поделиться ссылкой:

Источник

С-реактивный белок

С-реактивный белок (СРБ) — классический острофазовый белок, синтезирующийся в ответ на воспаление и тканевое повреждение.

По структуре он относится к семейству пентраксинов и состоит из 5 идентичных негликозилированных полипептидных субъединиц с молекулярной массой 23 кд, которые за счет нековалентных связей образуют циклическую дискообразную пентамерную структуру.

Его синтез кодируется одним геном, расположенным на первой хромосоме.

В норме в сыворотке крови СРБ присутствует в следовых количествах (около 0,8 мкг/мл). У 90% здоровых доноров его концентрация не превышает 3 мкг/мл, а у 99% она составляет менее 10 мкг/мл.

Однако на фоне воспаления она может увеличиваться в 100 и более раз, удваиваясь каждые 6 часов после активации его синтеза [B.Young et al.,1991; S.P.Ballou, 1992]. Повышение концентрации СРБ наблюдается уже через 4—6 часов после повреждения ткани, а максимум ее приходится на 24—72 часа.

Синтез и секреция С-реактивного белка происходят в печени и регулируются провоспалительными цитокинами, в первую очередь интерлейкином (ИЛ)-6 [P.Heinrich et al.,19901 а также ИЛ-1, фактор некроза опухоли (ФНО)-а и др., на уровне транскрипции гена СРБ. Период полужизни СРБ составляет примерно 19 часов и не зависит от его уровня в плазме. Повышение уровня СРБ при заболеваниях человека связано только с активацией его синтеза, а не с нарушением клиренса [D.Vigushin et al.,1993].

При воспалительных ревматических заболеваниях (РА) и системных васкулитах (ГКА) наблюдается корреляция между концентрацией С-реактивного белка и уровнем ИЛ-6 в сыворотке [A.Swaak et al., 1988; G.Vreugdenhil et al.,1990; I.Holt et al., 1991].

Поскольку интерлейкин-6, наряду с другими провоспалительными цитокинами, является важным медиатором воспаления, уровень СРБ адекватно отражает активность локального и системного иммуновоспалительного процесса при воспалительных заболеваниях человека, в том числе при системных васкулитах.

По нашим данным, средний уровень СРБ был достоверно выше, чем у доноров, при всех нозологических формах васкулитов (табл. 5.20) [А.А.Баранов,1998].

Таблица 5.20. Концентрация (М±а) и частота повышения (> 10 мг/л) С-реактивного белка у больных и у доноров

Нозологическая форма Число больных Уровень С-реактивного белка (мг/л) Частота повышения (%)
Узелковый полиартериит 16 14,19±12,73 37,5
Геморрагический васкулит 15 11,47±14,76 33,3
Артериит Такаясу 25 13,71±18,12 23,1
Облитерирующий тромбангиит 26 23,23±23,74 61,5
Доноры 42 3,35±2,92 4,7

Увеличение его концентрации имело место у 37,5% больных узелковым полиартериитом (УП) и достоверно коррелировало с клиническими проявлениями, отражающими общевоспалительную реакцию организма (снижение массы тела, артрит), а также развитием периферической гангрены мягких тканей стопы (табл. 5.21).

Читайте также:  Ребенок воспаление вокруг рта

Кроме того, в группе с высокими значениями этого показателя поражение почек встречалось в 50%, а при низкой концентрации СРБ — только в 10% случаев.


Таблица 5.21. Достоверные корреляционные связи между СРБ, клиническими синдромами и лабораторными показателями у больных системными васкулитами


Узелковый полиартериит

Геморрагический васкулит

Артериит Такаясу
Облитерирующий тромбангиит
Похудение (r=0,62*) Поражение почек (r=0,70**) Артралгии (r=0,40″*) Периферическая гангрена (r=0,43*)
Артрит (r=0,73**) Поражение ЖКТ (r=0,55*) ИКАВ (r=0,51**) Ишемия (r=0,51**)
Периферическая гангрена (r=0,62*) ИКАВ (r=0,72**) СОЭ (r=0,46*) ИКАВ (r=0,58**)
Поражение ЦНС (r=-0,52*) СОЭ (r=1,00***) ФВ:Аг (r=0,73***)
ИКАВ (r=0,70**) IgA (r=0,56*) АНЦА НРИФ (r=0,54**)
СОЭ (r=0,62*)
IgG (r=0,71**)
IgA РФ (r=0,64*)
IgG аКЛ (r=0,56*)
IgA аКЛ (r=0,64*)
АНЦА НРИФ (r=0,79**)

Примечание. * — р

При геморрагическом васкулите повышение С-реактивного белка выявлено у 33,3% больных. Поражение почек доминировало при высоких значениях этого показателя (80 и 10%; р=0,02).

Высокий уровень СРБ встречался у 32% больных с артериитом Такаясу, но не ассоциировался с каким-либо клиническим синдромом.

Более чем у половины (61,5%) больных облитерирующим тромбангиитом (ОТА) также наблюдалось повышение СРБ. Среди этих пациентов достоверно чаще, чем при нормальных значениях этого лабораторного показателя, встречалось развитие периферической гангрены пальцев стоп или кистей (соответственно 37,5 и 0%; р=0,0001).

При всех исследуемых формах васкулитов, высокие значения С-реактивного белка достоверно коррелировали с индексом клинической активности васкулита (ИКАВ). Подобная закономерность прослеживается и при других заболеваниях (гранулематоз Вегенера, микроскопический полиангиит (МПА)) [Т.В.Бекетова и соавт.,1996; R.A.Luqmani et al.,1994].

В целом повышение концентрации СРБ при васкулитах рассматривается как дополнительный лабораторный маркер их воспалительной активности.

Имеются данные о связи между уровнем СРБ и нарушением свертывания крови. Его увеличение чаще встречается у больных с нестабильной (65—90% случаев), чем стабильной (13%), стенокардией [B.C.Berk et al.,1990; G.Liuzzo et al.,1994]. Высокий уровень С-реактивного белка является фактором риска инфаркта миокарда или внезапной смерти у больных стенокардией [S.G.Thompson et al.,1995].

Наряду с СРБ, у больных нестабильной стенокардией чаще, чем при стабильной, наблюдается повышение уровня ИЛ-6 в сыворотке (соответственно у 59 и 21% больных) [L.M.Biasucci et al.,1995]. Кроме того, увеличение концентрации ИЛ-6 отмечено в остром периоде инфаркта миокарда [U.Ikeda et al.,1992] и после реперфузии [G.L.Kukielka et al.,1995].

Полагают, что важным фактором гиперкоагуляции и коронарного тромбоза является системное воспаление сосудов, о котором свидетельствует увеличение концентрации острофазовых белков в сыворотке крови, в частности СРБ [R.R.Azar & D.D.Waters,1996].

Известно, что сосудистая патология при антифосфолипидном синдроме (АФС) определяется как тромботическая васкулопатия. Однако при системной красной волчанке (СКВ) часто наблюдается развитие васкулита. Кроме того, развитие АФС описано у больных с различными формами системных васкулитов.

По нашим данным, приСКВу мужчин увеличение концентрации С-реактивного белка ассоциируется не только с наличием сопутствующей инфекции, но и с развитием тромботических осложнении заболевания (особенно артериальных тромбозов) [Н.Г.Клюквина и соавт.,1997]. При этом обнаружена корреляция между повышением СРБ и ускорением СОЭ, уровнем ФВ:Аг и IgG аКЛ.

Гаптоглобин

Гаптоглобин — а2-гликопротеин, состоящий из двух полипептидных цепей (а и в) с молекулярной массой соответстенно в 20 и 45 кд. В организме человека гаптоглобин находится в трех основных формах (аллельной 1.1 и 2.2 и гетерозиготной — 2.1), связанных с различными а-цепями.

Синтез этого вещества происходит в клетках печени, при стимуляции их цитокинами, особенно интерлейкин-6 [G.Darlington et al.,1986; J.Castell et al.,1989]. Основная биологическая функция гаптоглобина заключается в связывании свободного гемоглобина и транспорте последнего в печень, в которой он катаболизируется.

Этот процесс предотвращает потерю железа организмом и предупреждает повреждение почек при гемолизе. Уровень гаптоглобина повышается при острых и хронических воспалительных заболеваниях, отражая, по-видимому, неспецифическую стимуляцию гепатоцитов цитокинами.

Отдельные типы гаптоглобина имеют различное биологическое значение. Отмечено, что иммунохимические свойства гаптоглобина, полученного от больных со злокачественными новообразованиями, идентичны фетальному, обладающему более выраженными иммуносупрессивными свойствами, по сравнению с гаптоглобином, присутствующим в сыворотке у взрослых людей [S.Oh et а1.,1987].

Эти данные важны в плане последних сообщений о возможном участии этого вещества в ангиогенезе, который является одним из основных звеньев патогенеза опухолей, острых и хронических воспалительных заболеваний, особенно обусловленных С04+Т-лимфоцитами, включая системные васкулиты.

M.C.Cid и соавт.(1993) обнаружили, что гаптоглобин 2.2 стимулирует процессы ангиогенеза при системных васкулитах. При обследовании группы больных (28 с гранулематозом Вегенера, 6 с ГКА и 4 с артериитом Такаясу) отмечено существенное увеличение уровня сывороточного гаптоглобина при гранулематозе Вегенера, коррелирующее как с активностью воспалительного процесса, так и степенью ангиогенеза.

Полагают, что при васкулитах повышение уровня гаптоглобина может быть связано с процессом репарации тканей или обусловлено компенсаторными механизмами формирования коллатералей при ишемии органов.

Насонов Е.Л., Баранов А.А., Шилкина Н.П.

Опубликовал Константин Моканов

Источник