Калликреин кининовая система при воспалении

Калликреин-кининовая система (ККС) — группа белков крови, которые играют роль в регуляции сосудистого тонуса, диуреза, воспаление, коагуляции и рецепции боли. Биологически активными ее компонентами являются полипептидные гормоны — брадикинин и калидин. Это — одна из ключевых каскадных протеолитических систем плазмы крови, вместе с ренин-ангиотензиновой системы, комплементарной и системой свертывания крови участвует в регуляции некоторых базисных функций организма, таких, как поддержание артериального давления, антигенной совместимости и гемостаза.

История изучения

Началом можно считать 1909, когда Abelous и Bardier сообщили о резком снижении артериального давления у крыс при внутривенном введении мочи (богатой кинины). Позже, в 1930 году, ученые Emil Karl Frey, Heinrich Kraut и Eugen Werle обнаружили высокомолекулярное термолабильны вещество, отвечавшей за этот эффект (т.н. викосомолекулярний кининоген, ВМК). КАЛЛИКРЕИН были открыты как протеазы, способные высвобождать брадикинин и калидин с их «высокомолекулярных» предшественников, кининоген.

Компоненты системы

ККС состоит из группы высокомолекулярных белков-предшественников (кининоген), активных полипептидов (кининов), а также набора активирующих (калликреин, аминопептидазы, кининаза I) и ингибирующих ферментов (кининаза II).

В функциональном отношении человека можно выделить две независимые ККС, включающих различные типы КАЛЛИКРЕИН, кининоген и кининов: плазматическую (циркулирующую) и органные (местные).

Плазматическая ККС включая т.н. высокомолекулярный кининоген (ВМК) и плазменный прекалликреин синтезируемых в печени и секретируются, как остальные белков плазмы крови. Плазменный прекалликреин протеолитических активируется ХИИа фактором свертывания крови и другими протеазами (аминопептидазы) и в таком виде активирует коагуляцию и высвобождает биологически активный кинин — брадикинин с ВМК, что действует как провоспалительных фактор.

Местные ККС состоят из местно синтезированного или печеночного низкомолекулярного кининогена и тканевого калликреина. Они взаимодействуют по той же схеме. Локальные ККС найдены во многих внутренних органах и тканях, в частности, в миокарде, почечных канальцах, ЦНС, поджелудочной железе, простате, слюнных железах и гранулоцитах.

В отличие от плазматической ККС, органоспецифические тканевые системы могут непрерывно производить калликреин, соответственно и калидин здесь образуется постоянно с системного или местного кининогена: некоторые локальные системы синтезируют «свой», низкомолекулярный кининоген. Особенно это показательно в почках, где большое количество калликреина и кининогена синтезируются эпителием канальцев и выделяются с мочой.

Белки-предшественники

Высокомолекулярный кининоген (ВМК) и низкомолекулярный кининоген (НМК) служат предшественниками активных полипептидов. Сами они биологической активности нет.

  • ВМК синтезируется в печени наряду с прекалликреин.
  • НМК синтезируется местно, многими тканями и секретируется вместе с тканевым КАЛЛИКРЕИН.

ВМК и НМК образуются в результате альтернативного сплайсинга одного гена.

Биологически активные полипептиды

Собственно, кинины — это полипептидные гормоны. Период полураспада их очень короткий, около 30 секунд.

  • Брадикинин (БК) — нонапептид (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg), образующийся из ВМК под действием калликреина, действует на В2 и в меньшей степени на B1 рецепторы. Брадикинин, главным образом, составляет пул циркулирующих кининов и спавляе системное действие на сосудистое русло.
  • Калидин (КД) — декапептид, его еще называют — лизил-брадикинин (Lys-БК), высвобождается из НМК при воздействии на него тканевого калликреина. Он действует преимущественно аутокринно или паракринно на В1 и В2 рецепторы.

Ферменты

  • КАЛЛИКРЕИН (тканевой и плазменный) — сериновые протеазы, катализирующие образование кининов с кининоген. Прекалликреин служит предшественником плазменного калликреина. Он может катализировать образование кининов только после активации фактором Хагемана.
  • Кининаза И (карбоксипептидазы) присутствует в двух формах: циркулирующей N-форме (синтезируется печенью, 90% кининазнои активности плазмы) и связанной с мембраной M-форме (синтезируется эндотелием местно, в зависимости от органа). Отщепляет от молекулы кининов конечный аргининовых остаток. Таким образом, образуются активные метаболиты desArg9-брадикинин и desArg10-калидин. Кроме кининазы И эту роль могут выполнить нейтральные эндопептидазы и АПФ.
  • Кининаза ИИ (или АПФ, АПФ) имеет два активных центра: инактивирует брадикинин и катализирует образование ангиотензина II из ангиотензина I.
  • Нейтральные аминопептидазы участвуют в образовании активных кининовых метаболитов, последовательно отщепляя от N конца аминокислотные остатки метионина и лизина.

Рецепторы кининов

В1 рецепторы

В большинстве тканей В1 рецепторы отсутствуют в нормальном состоянии и появляются только после контакта с бактериальными эндотоксинами (например, липополисахаридами) или провоспалительных цитокинов (например, интерлейкин-1). Брадикинин практически не влияет на В1 рецепторы. Типичными агонистами этого субтипа рецепторов является метаболиты брадикинина и калидину, что потеряли свой терминальный аргининовых остаток (desArg9-БК и desArg10-КД) после отщепления его кининазы И. В опыте на крысах было показано, что desArg9-БК производит биологическое воздействие (вызывает артериальной гипотензии ) только после предварительной сенсибилизации животных бактериальными липополисахаридами.

В2 рецепторы

Наиболее весомые биологические эффекты кининов происходят через посредство В2-субтипа рецепторов (связанных с G-белком). Они присутствуют в большом количестве органов и тканей (например, на эндотелии, фибробластах, железистого эпителия, гладкомышечных клетках сосудов, кишечника, трахеи, матки, желчного пузыря, в почках, сердце, скелетных мышцах, ЦНС). В2 рецепторы в равной степени чувствительны к брадикинина и калидину. Очевидно, их стимуляция связана с работой ККС в обычных условиях и обеспечивает биологические эффекты кининов в регуляции работы внутренних органов.

Биологические эффекты кининов

Системные эффекты

Наряду с вазодилатации, что вызывает местную гиперемию и снижение артериального давления, кинины стимулируют болевые рецепторы и вызывают образование отека благодаря увеличению проницаемости сосудов. Через эти свойства кинины считаются классическими медиаторами воспаления. Они вносят свой вклад в развитие шока при панкреатите, сепсисе и внутрисосудистой коагуляции. Есть также данные, что калликреин имеет мощную хемотактичну активность, а кинины провоцируют высвобождение цитокинов из моноцитов.

Местные эффекты

В отличие от плазматической ККС, в нормальном физиологическом состоянии кинины продуцируются непрерывно в различных органах. Это позволяет ККС участвовать в регуляции многих физиологических функций. Так, большое значение имеет образование кининов в железистых органах (слюнных, потовых, поджелудочной железах, простате, почках) где кинины регулируют их перфузию, секрецию, сократимость гладкой мускулатуры. Было показано присутствие компонентов ККС в ЦНС и миокарде. В почках кининоген и калликреин синтезируются эпителием канальцев и секретируются в их просвет. Поэтому они в большом количестве содержатся в моче. Было обнаружено, что в почках кинины усиливают местное кровообращение, а также диурез и натрийурезу. В эндотелиоцитах под влиянием кининов стимулируется продукция оксида азота и простациклина (простагландина I 2).

Связь ККС с другими ферментными системами плазмы крови

Связь с системой комплемента

Существует взаимодействие между двумя протеолитическими ситемами в явлениях воспаления и сосудистой проницаемости. Кроме того, компонент комплемента — С1-ингибитор (C1-INH), белок являющегося ингибитором сериновых протеаз (серпин) — наиболее важный физиологический ингибитор калликреина плазмы, фактора XIa и XIIa. C1-INH также ингибирует протеиназы фибринолитической и свертывающей системы крови. Дефицит C1-INH позволяет активацию калликреина плазмы, что приводит к образованию активного брадикинина.

Связь с системой коагуляции

Известно, что активированный ХИИ фактор свертывания крови не только обеспечивает дальнейшее ферментативный цепь в системе коагуляции, а и расщепляет прекаликреи к активному калликреина. Калликреин, в свою очередь, как сериновых протеазы, наряду с расщеплением кининоген к кининов, способен активировать ХИИ фактор. Связь ККС с системой свертывания крови указывает, что первая может быть активирована в процессе контактной коагуляции (как происходит при артрите, аллергическом рините, диализе), а также в результате взаимодействия с бактериальными или эндогенными протеазами (как при сепсисе, панкреатите или операциях на предстательной железе).

Связь ренин-ангиотензиновой системы

Циркулирующая ККС имеет тесную связь с ренин-ангиотензиновой системы (РАС) благодаря общим для них ферментам — плазменном калликреина и кининазы ИИ. Калликреин расщепляет проренина к ренина и тем самым запускает каскад протеолитических реакции, конечным активным продуктом которых является ангиотензин II — мощный вазоконстриктор. Кининаза ИИ, которая также называется АПФ (АПФ), обеспечивает непосредственное превращение неактивного ангиотензина I в ангиотензин II в. Таким образом, АПФ с одной стороны активирует РАС и, тем самым, способствует повышению АД, а с другой — деградирует кинины до неактивных метаболитов, нивелируя их гипотензивное действие.

Исследование кинин-потенцируя эффекта змеиных ядов позволило открыть первые ингибиторы АПФ. Они нашли широкое применение в лечении артериальной гипертензии. Значительная роль кининов в широком спектре активности ингибиторов АПФ была объяснена, когда стало известно, что вазодилятирующий эффект брадикинина опосредуется выделением эндотелиальных медиаторов оксида азота (NO) и простациклина (PGI2). Сейчас это едва ли не самая многочисленная группа антигипертензивных препаратов (около 15 разновидностей ингибиторов АПФ). Чаще всего их применяют в комбинации с тиазидными диуретиками. Распространенной побочным действием ингибиторов АПФ является сухой кашель, обусловленный накоплением нерасщепленных кининов в тканях легких.

Источник

Одной из важнейших физиологических систем организма является калликреин-кининовая система (ККС), играющая центральную роль в регуляции активности каскадных протеолитических систем – кининогенеза, свёртывания крови, фибринолиза (см. 3.14.2.4), комплемента (см. 3.10.3), ренин-ангиотензивной системы (3.16) – и обеспечивающая процессы адаптации и защиты организма. Благодаря деятельности ККС осуществляется контроль над различными стадиями морфогенеза клеток отдельных тканей, иммунитетом, развитием воспаления, возникновением злокачественных новообразований и другими патологическими процессами.

В норме ККС совместно с ренин-ангиотензин-альдостероновой системой (РААС) регулирует локальную микроциркуляцию (см. 3.16). При этом, если преобладает активность РААС, то наступает сокращение артериол и повышение кровяного давления. Усиление же активности калликреин-кининовой системы ведёт к местному расширению сосудов и покраснению кожи, что, в частности, наблюдается при воспалении (эритема).

В настоящее время известно, что калликреины относятся к трипсиноподобным сериновым протеиназам и делятся на плазменные и тканевые. Плазменный калликреин имеет ММ, равную приблизительно 90 кДа. Тканевые калликреины (ихне менее десяти) содержатся в тканях некоторых органов и их секретах – в поджелудочной железе, слюнных железах, стенке кишечника, почках и моче, половых и потовых железах. Их ММ колеблется от 24 до 40 кДа.

В плазме крови активность калликреина контролируют инактиватор первого компонента комплемента (С1-ina), a2-макроглобулин и в меньшей степени – антитромбин III и инактиватор PrC. Активность тканевых калликреинов регулируется тканевыми и плазменными серпинами, среди которых выделяется a1-протеазный ингибитор и инактиватор PrC.

Прекалликреин по своей природе является гликопротеином и состоит из одной пептидной цепочки, включающей 619 аминокислотных остатков. Основное место синтеза прекалликреина – гепатоциты.

Кининогены являются полифункциональными гликопротеидами, молекулы которых состоят из одной полипептидной цепи. Синтезируются кининогены в основном гепатоцитами, но перед тем как секретироваться в кровоток, они подвергаются посттрансляционному гликолизированию. В плазме крови человека существует два вида кининогена: высокомолекулярный (ВМК) с ММ около 120 кДа (состоит из 626 аминокислотных остатков) и низкомолекулярный (НМК) с ММ около 65 кДа (состоит из 409 аминокислотных остатков).

Период полураспада брадикинина в большом круге кровообращения равен 17-24 секундам, но еще быстрее он разрушается в малом круге кровообращения. Это обусловлено наличием в крови и тканях высокоактивных ферментов – киназ, осуществляющих контроль за уровнем кининов. Киназы, разрушающие брадикинин, относятся к металлоферментам, гидролизующим отдельные пептидные связи в молекуле брадикинина и тем самым переводящим его в неактивные продукты. Расщепление любой из имеющихся 8 пептидных связей приводит к полной или частичной инактивации брадикинина. Наиболее важную роль в метаболизме брадикинина играют кининаза I (аргинин-карбоксипептидаза) и кининаза II (карбоксикатепсин или ангиотензин-I-превращающий фермент).

Активация прекалликреина происходит за счет его расщепления аквированным фактором Хагемана (XIIa) с образованием легкой и тяжелой цепей, связанных дисульфидной связью. Появившийся после активации прекалликреина калликреин обладает чрезвычайно широким спектром функций. Под его влиянием расщепляются две пептидные связи в ВМК, благодаря чему освобождается брадикинин, регулирующий течение многих физиологических функций и способствующий возникновению патологических состояний. Следует, однако, заметить, что активация прекалликреина под воздействием фактора XIIa осуществляется лишь на поверхности, в том числе на анионной поверхности поврежденного эндотелия, на коллагене, кристаллах уреатов и др.

В контактной системе активации участвуют 4 белка: прекалликреин, факторы XII и ХI свёртывания крови и ВМК. В результате конформационных изменений и протеолитического расщепления образуются высокоактивные биологические продукты – калликреин, факторы XIIa, XIa и ВМКа. Следует также заметить, что существуют как минимум 2 формы активного фактора Хагемана – a и b (aXIIa и bXIIa), обладающие различными биологическими эффектами.

В настоящее время контактная система активации рассматривается как триггерный механизм, запускающий активацию всех 5 протеолитических систем плазмы крови: свёртывание, фибринолиз, комплемент, калликреин-кининовую и ренин-ангиотензивную, действующих совместно и обеспечивающих течение адаптационных реакций организма в меняющихся условиях окружающей среды.

В результате активации калликреин-кининовой системы образуются кинины, превращающиеся под воздействим аминопептидаз в брадикинин.

Следует также обратить внимание на то, что в сердце находится «собственная» калликреин-кининовая система. В частности, в гомогенатах сердца обнаружена кининогеназа, активируемая трипсином. Существуют факты, доказывающие, что в сердце образуется калликреин и кининоген. Предполагается, что кинины облегчают локальный рилизинг норадреналина и тем самым приспосабливают деятельность сердца к стрессорным воздействиям.

Какие же функции выполняет калликреин-кининовая система?

1. Принимает участие во внутреннем механизме образования протромбиназы, благодаря активации фактора XIa;

2. Обеспечивает через фактор XIIa и калликреин взаимосвязь между внешним и внутренним путем образования протромбиназы, активируя факторы VII и XI.

3. Активирует фибринолиз. Недавно установлено, что не только калликреин, но и факторы XIIa и XIa способны непосредственно активировать плазминоген, переводя его в плазмин. Кроме того, калликреин является проактиватором проурокиназы и плазминогена. Однако наиболее эффективно активация проурокиназ происходит при связывании калликреина через ВМК с рецептором урокиназы.

4. Участвует в регуляции основных биологических функций сосудистой стенки. В частности, брадикинин расширяет просвет периферических и коронарных артерий, тем самымым снижая артериальное давление и повышая проницаемость капилляров. За последние годы установлена тесная связь между образованием брадикинина и высвобождением из эндотелия простациклина и эндотелиального фактора гиперполяризации.

5. Ферменты кининовой системы активируют С1-компонент комплемента и проренин, а также стимулируют активацию нейтрофилов либо непосредственно, либо через высвобождение брадикинина.

6. Кинины принимают участие в возникновении воспаления, обеспечивая местное развитие его основных признаков;

7. Под влиянием кининов происходит усиление секреции IL-1, TNFa, IL-8, а также простагландинов и лейкотриенов.

8. Кинины оказывают влияние на продукцию и секрецию оксида азота (NO), расширяющего кровеносные сосуды и являющегося мощным дезагрегантом тромбоцитов, активатором фибринолиза и медиатором в ЦНС.

9. Под воздействием брадикинина усиливается сокращение гладкой мускулатуры бронхов и других органов и стимулируется болевой эффект. Брадикинин обладает инсулиноподобным действием, способствует усвоению глюкозы периферическими органами, модулирует передачу нервных импульсов в ЦНС.

Таковы краткие представления о функциях калликреин-кининовой системы.

Источник

Физиологическое равновесие биохимических компонентов в жидких средах организма (гомеостаз) создается и поддерживается при участии согласованного взаимодействия протеоли- тических систем крови — гемостаза, фибринолиза, ренин-ан- гиотензиновой, калликреин-кининовой и комплемента. В этом ансамбле особая роль принадлежит калликреин-кининовой системе, поскольку она является связующим звеном между ними и единым координационным комплексом, объединяющим нервную, эндокринную и иммунную системы организма. Таким образом, следует считать, что информация о функциональном состоянии калликреин-кининовой системы является интегральным лабораторным показателем гомеостаза. Последний нарушается при различных повреждениях органов и тканей, в том числе воспалительных процессах различной этиологии и локализации. Сведения об изменениях активности отдельных компонентов калликреин-кининовой системы позволяют проводить оценку как характера и степени изменений биохимического гомеостаза во всех стадиях течения болезни,

так и выступать объективным критерием эффективности проводимой терапии. Углубленные исследования изменений гомеостаза необходимы также для оценки соотношения между локальными проявлениями и общей характеристикой конкретной патологии, т.е. для совершенствования лечебного процесса, обеспечения принципа «управляемой терапии» и глубокого понимания фундаментальных основ патологии.

Протеиназы крови и клеток контролируют множество физиологических процессов, включаются в системы рецепции, адаптационные перестройки и морфогенетические превращения клеток [Жебеленко Г.И., 1994; Яровая Г.А. и др., 1996]. Калликреин-кининовая система относится к числу наиболее интенсивно изучаемых протеолитических систем крови. Одной из причин интереса к ней со стороны исследователей различного профиля является ее полифункциональность вследствие особых свойств основного компонента — кининобразующего

  • фермента — калликреина и образуемого этим ферментом семейства высокоактивных пептидов, называемых кининами и обладающих огромным спектром биологического действия.

Кинины крови и межтканевой жидкости называют пептидными регуляторами, поскольку они выполняют роль медиаторов всех жизненно важных физиологических и биохимических процессов. Кроме указанных, к числу основных компонентов калликреин-кининовой системы относят неактивную форму калликреина крови — прекалликреин, активаторы прекалли- ; креина, ингибиторы калликреина и кининрасщепляющие ферменты — кининазы.

‘ Калликреин плазмы крови относится к сериновым протеи- назам. Ферменты этой группы содержатся в панкреатическом и кишечном соке, крови. Они опосредуют функционирование каскадных систем крови — гемостаза, фибринолиза, калликре- ин-кининовой, комплемента. В клетках крови протеиназы ло. кализованы в секреторных и специфических гранулах.

Калликреин является сложным белком с относительной мо. лекулярной массой 90 000—160 000, обладающей в электричес- … ком поле подвижностью |3- и у-глобулинов. В крови калликреин плазмы циркулирует в трех формах: в свободном активном , состоянии (небольшое количество); в комплексе с ингибито- , рами (значительная часть) и в форме неактивного предшест-

  • венника — прекалликреина, синтезируемого печенью (значительная часть). Кроме калликреина печеночного происхождения, в крови содержатся калликреины желез (слюнных, под. желудочной, половых) и внутренних органов (почек и других тканей), которые поступают в кровоток в активированном виде. Основная функция калликреина плазмы заключается в ..,: быстром образовании кинина — брадикинина — из высокоспе- :i f циализированного белкового субстрата — высокомолекулярно, ,.’то кининогена. Молекулярная масса его составляет 80 000—

120 000, на его долю приходится 15—20 % от общего кинино- гена плазмы, т.е. комплекса с низкомолекулярным кининоге- ном. Одновременно высокомолекулярный кининоген является плазменным активатором XI фактора гемостаза — плазменного предшественника тромбопластина. Он идентифицируется с фактором Фитцджеральда свертывающей системы крови. Основную часть субстрата (85 %) составляет низкомолекулярный кининоген (молекулярная масса 50 000). Под действием кал- ликреина желез и внутренних органов из низкомолекулярного кининогена образуется кинин — каллидин.

Активатором неактивного прекалликреина в активный кал- ликреин является фрагмент фактора Хагемана (XII фактор свертывания крови). Роль активатора прекалликреина могут выполнять также плазмин и трипсин. Эндогенная активация прекалликреина в калликреин осуществляется в результате последовательного активирования ряда протеолитических ферментов. При этом активация фактора Хагемана является реци- прокной (взаимообратной). Это имеет большое физиологическое значение в осуществлении тесной связи калликреин-кини- новой системы с системой свертывания крови. Прекалликреин одновременно является плазменным фактором . внутреннего пути активации протромбина. Он идентифицирован с фактором Флетчера, опосредующим контактную фазу свертывания крови. В настоящее время уточнен сложный механизм активации прекалликреина крови в калликреин. Доказана важность самого процесса активации прекалликреина в цепочке реакций, приводящих в активное состояние пять протеолитических систем крови — свертывания, фибринолиза, калликреин-ки- ниновую, ренин-ангиотензиновую, систему комплемента. Установлено, что в кровотоке прекалликреин и XI фактор свертывания крови циркулируют в комплексе с высокомолекулярным кининогеном, с помощью которого они сорбируются на активизирующей поверхности эндотелиальных клеток. Сорбция XII фактора свертывания крови на эндотелии происходит без участия высокомолекулярного кининогена.

В комплекс сорбированных белков, кроме указанных (высокомолекулярного кининогена, прекалликреина, XI и XII факторов свертывания крови), входят субъединицы q первого компонента комплемента, рецепторы урокиназы, цитокератин

  1. и 2п2+-протеиназа. Это обеспечивает высокую скорость активации прекалликреина в калликреин и факторов XI и XII в Х1а и ХПа. Образовавшиеся активные протеиназы активируют плазминоген и проурокининазу, при этом активирующая активность калликреина значительно выше активных факторов свертывания крови. Основная роль двух компонентов калли- креин-кининовой системы (высокомолекулярный кининоген и прекалликреин) заключается в активации фибринолиза.

Интенсивность процесса кининообразования (кининогенеза) определяется не только концентрацией активного калликреи- на, но и уровнем различных ингибиторов протеиназ: сс2-мак- роглобулина, ccj -антитрипсина, антитромбина III, инактиватора первого компонента комплемента (ингибитор С1-эстеразы). Соединяясь с калликреином, ингибиторы образуют лабильный комплекс: калликреин + ингибитор, который участвует в регуляции концентрации активного калликреина и кининов крови.

Кроме кининобразующей функции, калликреину плазмы присущи следующие влияния: усиление хемотаксиса нейтрофилов, регуляция активности VII фактора свертывания крови путем отщепления от кининов пептидного фрагмента — киф- ракина, осуществление связи калликреин-кининовой системы с иммунной системой. Кифракин усиливает действие второго и четвертого компонентов комплемента (С2 и С4) на его первый компонент (С1). Кроме того, кининобразующий фермент плазмы участвует в презентации антигенов иммунокомпетент- ным клеткам. Калликреин желез опосредует посттрансляцион- ные процессы формирования биологически активных пептидов из их предшественников [Hiwada К. et al., 1983].

Калликреин крови в настоящее время считают адаптогеном, повышающим устойчивость организма к стрессовым воздействиям. Адаптационная функция организма осуществляется через влияние на корковое вещество надпочечников путем нормализации соотношения выработки глюкокортикостероидов и минералокортикостероидов. Гиперпродукция калликреина и брадикинина приводит к уменьшению уровня кортикостероидов в надпочечниках и плазме крови, что влечет за собой усиление синтеза минералокортикоидов.

В последние годы уточнен биохимический механизм действия калликреина. Установлена очень узкая субстратная специфичность этого фермента в отношении высокоспециализированных белковых предшественников: высокомолекулярного и низкомолекулярного кининогенов, от которых отщепляются низкомолекулярные пептиды — кинины.

Широкое изучение семейства калликреиновых желез [Raff M.C. et al., 1992] позволило установить набор генов, кодирующих синтез этих ферментов у человека и лабораторных животных. Полагают, что в функционировании калликреинов желез важное место принадлежит пространственной модификации их белковых молекул.

Образуемые под действием плазменных и железистых калликреинов кинины по химической структуре представляют собой пептиды молекулярной массы 1000—1300.

В плазме крови циркулирует семейство кининов, включающее:

  1. брадикинин, имеющий 9 аминокислотных остатков;
  2. каллидин, состоящий из 10 аминокислотных остатков;
  3. метионил-лизил-брадикинин, включающий 11 аминокислотных остатков;
  4. глицил-аргинил-метионил-лизил-брадикинин (ГАМЛ- брадикинин), построенный из 13 аминокислотных остатков.

Физиологический эффект действия кининов основан на их соединении с высокоспециализированными В2-рецепторами и их подтипами, локализованными в клетках разных органов. В молекуле кининов имеются два функционально различных участка, один из которых обеспечивает специфичность их соединения с рецепторами органа-мишени, другой активирует мембранную аденилатциклазу и способствует образованию из АТФ вторичного внутриклеточного медиатора — цАМФ. Последний активирует NO-синтетазу, под действием которой в клетке-мишени образуется окись азота (N0), непосредственно влияющая на гладкие мышцы сосудов. Ферментативным образованием N0 объясняют улучшение микроваскуляризации эндотелия и увеличение числа эндотелиальных клеток.

В норме существует химическое равновесие между процессами кининообразования и кининоразрушения, благодаря чему постоянно поддерживается их определенный физиологический уровень. Кинины обладают чрезвычайно высокой биологической активностью: их действие проявляется при концентрации 1×10″10 г/мл. Кинины являются мощными регуляторами кровообращения на всех уровнях сосудистой системы в сердце, органах дыхания, пищеварения, мочевыделения. Они влияют на тонус гладких мышц бронхов, кровеносных сосудов, легочную вентиляцию, состояние проницаемости сосудистой стенки, рецепторы вегетативной нервной системы, интенсивность экскреции натрия и воды почками, биосинтез, скорость секреции рада прессорных гормонов, миграцию и хемотаксис лейкоцитов, утилизацию кислорода и глюкозы клетками. Полагают, что ускорение транспорта глюкозы брадикинином связано с биосинтезом особого белка G — LNT.

На сердце и сосуды малого круга кровообращения кинины оказывают избирательное сосудорасширяющее действие; повышают систолический и минутный объем крови; увеличивают коронарный кровоток и приток крови к правому предсердию и отток из левого предсердия; снижают кровяное давление в общем круге циркуляции и повышают его в легочной артерии; усиливают потребление кислорода и обмен веществ в миокарде. Кинины опосредуют восприятие боли и влияют на состояние рецепторов, воспринимающих действие классических гормонов. Брадикинин рассматривают также и как нейрогормон, регулирующий многие функции мозга.

Вследствие того что при массивном местном освобождении кинины вызывают основные симптомы воспаления (гиперемию, отек, увеличение проницаемости сосудов, боль, нарушение функции), их относят к числу медиаторов воспаления.

Исследования последнего периода обнаружили функциональную связь кининов с ангиотензином, простациклином и эндотелинами (пептидами, открытыми в 1988—1989 гг. и образующимися в эндотелиальных клетках сосудов), обладающими сильным вазоконстрикторным свойством [Гомазков О.А.,

  • 1995].

Широкий спектр биологического действия кининов допол- . нен сведениями об их участии в регуляции нормального клеточного цикла, заключительные стадии которого связаны с увеличением уровня данных пептидов.

На современном этапе изучения механизмов митоза клеток . большое внимание уделяют изучению метаболизма цитокинов (интерлейкинов, лимфокинов), функции и эффекты которых ‘ зависят от обмена брадикинина. Цитокины осуществляют функцию «социального контроля», обеспечивая постоянство клеточного состава ткани. Первичное нарушение баланса в системе образования и распада кининов и дефекты в течении их пострецепторных процессов могут вызвать нарушение в образовании цитокинов, которые, модулируя соотношение внутриклеточных белков, белков-рецепторов, определяют восприимчивость к апоптозу (естественной, запрограммированной смерти клеток) и могут приводить к нарушению процессов клеточной пролиферации и дифференцировки [Салтыкова Л.Б., Новик А.А., 1997].

В настоящее время считается, что протеиназы крови и клеток определяют весь характер метаболизма, адаптацию и защиту организма. Выраженность адаптации к изменяющимся условиям внешней и внутренней среды определяется интен-

  • ‘ сивностью кининогенеза. При чрезмерно усиленном или ос

лабленном кининогенезе калликреин-кининовая система крови из системы, обеспечивающей саногенез, превращается в систему, изменения активности которой составляют важное . звено патогенеза патологических процессов в различных органах и системах организма.

В 1995—1997 гг. М.С. Суровикиной был разработан специфический колориметрический метод определения БАЭЭ-эсте- разной активности калликреина плазмы крови [Суровики- . на М.С. и др., 1995], который позволяет определить активность трех форм калликреина: общего, связанного с ингибиторами, прекалликреина и специальный лабораторный показатель — процент адсорбции калликреина на каолине (ПАКЛ) [Сурови- кина М.С. и др., 1997]. Предложенный метод коррелирует с кининогеназным способом и позволяет выявить такой же ха

  • рактер нарушения кининогенеза (неизменен, усилен, ослаблен) при патологии, как и кининогеназный метод. Показатели активности общего калликреина характеризуют интенсивность кининогенеза и биохимический гомеостаз; уровень калликреи- на, связанного с ингибиторами, указывает на содержание кал-

ликреина плазменного и тканевого происхождения; прекалли- креин свидетельствует о синтезе калликреина печенью, потому является маркером ее функции. ПАКЛ характеризует в определенной степени изменения пространственной структуры калликреина и качественное состояние его молекулы.

Изучение характера изменений калликреин-кининовой системы указывает на важную роль нарушений кининогенеза при ГСЗ и обосновывает необходимость его определения в практической медицине. Индивидуальная оценка интенсивности кининогенеза в разные сроки течения ГСЗ позволяет получать качественную оценку гомеостаза, на основе которой возможно осуществление целенаправленной патогенетически обоснованной коррекции нарушенного обмена таких мощных его регуляторов, как кинины.

Источник