Первичном и вторичном повреждении ткани при воспалении

Первичном и вторичном повреждении ткани при воспалении thumbnail

(Лекция № IX) Часть 1.

1. Понятие о воспалении.

2. Первичное и вторичное повреждение.

3. Нарушения обмена веществ при воспалении.

4. Медиаторы воспаления.

5. Стадии сосудистой реакции при воспалении.

6. Экссудат, его виды и функции.

Воспаление (inflammatio) — это сложная местная защитно-приспособительная реакция соединительной ткани, сосудов и нервной системы целостного организма, выработанная в процессе эволюции у высокоорганизованных существ в ответ на повреждение, направлена на изоляцию и удаление повреждающего агента и ликвидацию последствий повреждения. Это типовой патологический процесс с изменением обмена веществ и кровообращения, фагоцитозом и пролиферацией. В основе любого воспаления лежит: 1) повреждение и 2) защитные реакции. Способность противостоять повреждению, способность к заживлению ран, к восстановлению по крайней мере некоторых утраченных тканей — важнейшее свойство живых организмов. И эти свойства определяются тем, что здоровый организм немедленно отвечает на повреждение рядом общих и местных реакций. Общие реакции обусловлены более или менее выраженными изменениями функционального состояния нервной, эндокринной и иммунной систем организма. Они сопровождаются изменениями реактивности всего организма в целом. Местные реакции, возникающие в зоне повреждения и в непосредственной близости от нее, характеризуют процесс, называемый воспалением.

Биологический смысл воспаления в том, чтобы ограничить, задержать, остановить развитие повреждения и далее, если это удастся, расчистить зону повреждения от продуктов распада и разрушенных тканей, подготовив этим самым почву для собственно восстановительных процессов.

В 18 веке Цельс описал 4 основных клинических признака воспаления: краснота (rubor), припухлость (tumor), боль (dolor) и повышение температуры (calor). Гален добавил пятый признак — нарушение функции (functio laesa). Rubor, tumor, dolor, calor et functio laesa symptomata inflammationis sunt.

Причины воспаления : а) физические факторы, б) химические факторы, в) биологические факторы, г) расстройства кровообращения, д) опухолевый рост, е) иммунные реакции.

Различаются 4 стадии:

1. альтерация (alteratio),

2. экссудация (exsudatio),

3. эмиграция (emigratio),

4. пролиферация (proliferatio).

Альтерация— это главное звено, по сути — пусковой механизм. Альтерация может быть первичная или вторичная. Первичная альтерация развивается сразу после воздействия повреждающего фактора и формируется на уровне функционального элемента органа. Первичная альтерация может проявляться специфическими изменениями, а также неспецифическими изменениями, которые развиваются стереотипно независимо от свойств и особенностей действия патогенного фактора. Эти изменения связаны:

1) с повреждением мембранных структур,

2) с повреждением мембраны митохондрий,

3) с повреждением лизосом.

Нарушения структуры мембраны клеток ведет к нарушению клеточных насосов. Отсюда теряется способность клетки адекватно реагировать изменением собственного метаболизма на изменения гомеостаза окружающей среды, изменяются ферментативные системы и митохондрии. В клетке накапливаются недоокисленные продукты обмена: пировиноградная, молочная и янтарная кислоты. Первоначально эти изменения являются обратимыми и могут исчезнуть, если этиологический фактор прекратил свое действие. Клетка полностью восстанавливает свои функции. Если же повреждение продолжается и в процесс вовлекаются лизосомы, то изменения носят необратимый характер. Поэтому лизосомы называют «стартовыми площадками воспаления» и именно с них начинается формирование вторичной альтерации.

Вторичная альтерация обусловлена повреждающим действием лизосомальных ферментов. Усиливаются процессы гликолиза, липолиза и протеолиза. В результате распада белков в тканях увеличивается количество полипептидов и аминокислот; при распаде жиров возрастают жирные кислоты; нарушения углеводного обмена ведет к накоплению молочной кислоты. Все это вызывает физико-химические нарушения в тканях и развиваются гиперосмия с повышением концентрации ионов K+, Na+, Ca2+, Cl-; гиперонкия — повышение количества белковых молекул из-за распада крупных на более мелкие; гипериония H+ — в связи с диссоциацией большого количества кислот с высвобождением ионов водорода. И как следствие всего этого — развивается метаболический ацидоз в связи с повышением кислых продуктов обмена. В процесс вовлекаются все компоненты ткани и альтерация носит необратимый характер, итогом которого будет аутолиз клеток. Образуются вещества, которые могут не только усиливать, но и ослаблять альтерацию, оказывая влияние на различные компоненты воспаления, т.е. регулируя микроциркуляцию, экссудацию, эмиграцию лейкоцитов и пролиферацию клеток соединительной ткани.

Эти биологически активные вещества называются медиаторы или модуляторы воспаления. Медиаторы воспаления различаются

?по времени их активности: ранние и поздние;

? по точке приложения: влияющие на сосуды или на клетки и

? по происхождению: гуморальные (плазменные) и клеточные.

Источниками медиаторов воспаления могут быть белки крови и межклеточной жидкости, все клетки крови, клетки соединительной ткани, нервные клетки, неклеточные элементы соединительной ткани.

Различают преформированные и вновь образующиеся медиаторы. Преформированные медиаторы синтезируются постоянно без всякого повреждения, накапливаются в специальных хранилищах и высвобождаются немедленно после повреждения (например — гистамин). Синтез других медиаторов начинается после повреждения, как ответная мера. Такие медиаторы называются вновь образующимися (например простагландины).

Повреждение ткани сопровождается активацией специальных протеолитических систем крови, что ведет к появлению в очаге воспаления различных пептидов, выполняющих роль медиаторов воспаления. Вазоактивные кинины образуются так же при активации фибринолитической системы активированным фактором Хагемана, который превращает циркулирующий в крови неактивный плазминоген в активный фермент плазмин. Плазмин расщепляет фибрин (а своевременное переваривание фибрина необходимо для успешного заживления ран). При этом образуются пептиды, способные расширять сосуды и поддерживать увеличенную сосудистую проницаемость. Плазмин активирует систему комплемента.

Система комплемента, включающая около 20 различных белков, активируется кроме фактора Хагемана еще двумя путями: классическим — это комплекс антиген-антитело и альтернативным — это липополисахариды микробных клеток. В воспалении участвуют С3а и С5а компоненты комплемента, которые опсонизируют и лизируют бактерии, вирусы и патологически измененные собственные клетки; способствуют дегрануляции тучных клеток и базофилов с высвобождением медиаторов. Компоненты комплемента вызывают также адгезию, агрегацию и дегрануляцию клеток крови, выход лизосомальных ферментов, образование свободных радикалов, ИЛ-1, стимулируют хемотаксис, лейкопоэз и синтез иммуноглобулинов.

Медиаторы плазменного и клеточного происхождения взаимосвязаны и действуют по принципу аутокаталитической реакции с обратной связью и взаимным усилением.

Нарушение микроциркуляции в очаге воспаления характеризуется изменением тонуса микроциркуляторных сосудов, усиленным током жидкой части крови за пределы сосуда (т.е. экссудацией) и выходом форменных элементов крови (т.е. эмиграцией).

Для сосудистой реакции характерны 4 стадии :

1) кратковременный спазм сосудов,

2) артериальная гиперемия,

3) венозная гиперемия,

4) стаз.

Спазм сосудов возникает при действии повреждающего агента на ткани и связан с тем, что вазоконстрикторы возбуждаются первыми, поскольку они чувствительнее вазодилятаторов. Спазм длится до 40 секунд и быстро сменяется артериальной гиперемией.

Артериальная гиперемия формируется следующими тремя путями:

? как результат паралича вазоконстрикторов;

? как результат воздействия медиаторов с сосудорасширяющей активностью;

? как результат реализации аксон-рефлекса.

Расслабляются прекапиллярные сфинктеры, увеличивается число функционирующих капилляров и кровоток через сосуды поврежденного участка может в десятки раз превышать таковой неповрежденной ткани. Расширение микроциркуляторных сосудов, увеличение количества функционирующих капилляров и повышенное кровенаполнение органа определяет первый макроскопический признак воспаления — покраснение. Если воспаление развивается в коже, температура которой ниже температуры притекающей крови, то температура воспаленного участка повышается — возникает жар. Поскольку в первое время после повреждения линейная и объемная скорость кровотока в участке воспаления достаточно велики, то оттекающая из очага воспаления кровь содержит большее количество кислорода и меньшее количество восстановленного гемоглобина и поэтому имеет яркокрасную окраску. Артериальная гиперемия при воспалении сохраняется недолго (от 15 минут до часа) и всегда переходит в венозную гиперемию, при которой увеличенное кровенаполнение органа сочетается с замедлением и даже полным прекращением капиллярного кровотока.

Венозная гиперемия начинается с максимального расширения прекапиллярных сфинктеров, которые становятся нечувствительными к вазоконстрикторным стимулам и венозный отток затрудняется. После этого замедляется ток крови в капиллярах и приносящих артериолах. Главной причиной развития венозной гиперемии является экссудация — выход жидкой части крови из микроциркуляторного русла в окружающую ткань. Экссудация сопровождается повышением вязкости крови, периферическое сопротивление кровотоку возрастает, скорость тока крови падает. Кроме того, экссудат сдавливает венозные сосуды, что затрудняет венозный отток и также усиливает венозную гиперемию. Развитию венозной гиперемии способствует набухание в кислой среде форменных элементов крови, сгущение крови, нарушение десмосом, краевое стояние лейкоцитов, образование микротромбов. Кровоток постепенно замедляется и приобретает новые качественные особенности из-за повышения гидростатического давления в сосудах: кровь начинает двигаться толчкообразно, когда в момент систолы сердца кровь продвигается вперед, а в момент диастолы кровь останавливается. При дальнейшем повышении гидростатического давления кровь в систолу продвигается вперед, а в момент диастолы возвращается обратно — т.е.возникает маятникообразное движение. Толчкообразное и маятникообразное движение крови определяет возникновение пульсирующей боли. Постепенно экссудация вызывает развитие стаза — обычное явление при воспалении.

Как правило, стаз возникает в отдельных сосудах венозной части микроциркуляторного русла из-за резкого повышения ее проницаемости. При этом жидкая часть крови быстро переходит во внесосудистое пространство и сосуд остается заполненным массой плотноприлежащих друг к другу форменных элементов крови. Высокая вязкость такой массы делает невозможным продвижение ее по сосудам и возникает стаз. Эритроциты образуют «монетные столбики», границы между ними постепенно стираются и образуется сплошная масса в просвете сосуда — сладж (от англ. sludge — тина, грязь).

Механизмы экссудации: экссудация при воспалении обусловлена прежде всего повышением проницаемости микроциркуляторного русла для белка в следствие существенного изменения сосудистого эндотелия. Изменение свойств эндотелиальных клеток микроциркуляторных сосудов — это главная, но не единственная причина экссудации при воспалении. Образованию различного экссудата способствует рост гидростатического давления внутри микроциркуляторных сосудов, связанный с расширением приносящих артериол, увеличение осмотического давления интерстициальной жидкости, обусловленное накоплением во внесосудистом пространстве осмотически активных продуктов распада ткани. Более значительно процесс экссудации выражен в венулах и капиллярах. Экссудация формирует четвертый признак воспаления — припухлость (tumor).

Состав экссудата (exsudatum) — это жидкая часть крови, форменные элементы крови и разрушенные ткани.

По составу экссудата выделяют 5 видов воспаления:

? серозный;

? катаральный (слизистый);

? фибринозный;

? геморрагический;

? гнойный;

? ихорозный.

Функции экссудата — в результате экссудации происходит разбавление концентрации бактериальных и других токсинов и разрушение их поступающими из плазмы крови протеолитическими ферментами. В ходе экссудации в очаг воспаления поступают сывороточные антитела, которые нейтрализуют бактериальные токсины и опсонизируют бактерии. Воспалительная гиперемия обеспечивает переход в очаг воспаления лейкоцитов крови, способствует фагоцитозу. Фибриноген экссудата превращается в фибрин, нити которого создают структуру, облегчающую переход лейкоцитов в рану. Фибрин играет важную роль в процессе заживления ран.

Однако экссудация имеет и отрицательные последствия — отек тканей может привести к удушью или угрожающему для жизни повышению внутричерепного давления. Нарушения микроциркуляции способны привести к ишемическому повреждению тканей. Излишнее отложение фибрина может препятствовать последующему восстановлению поврежденной ткани и способствовать избыточному разрастанию соединительной ткани. Поэтому врач должен осуществлять эффективный контроль за развитием экссудации.

Источник

Клеточные механизмы защитных реакций организма при воспалении.

Основные закономерности развития необратимых патологических изменений в клетках при первичной и вторичной альтерации

Рассматривая воспаление как типовой патологический процесс, протекающий в виде последовательно сменяющих друг друга, а в ряде случаев развивающихся параллельно стадий альтерации, экссудации и пролиферации, необходимо отметить, что при определенных условиях течение воспалительных реакций может иметь как преимущественно защитно-приспособительный, так и разрушительный характер.

Воздействие на ткани различных по своей природе факторов (химических, физических, бактериальных), как правило, приводит к развитию первичной альтерации. Степень выраженности и распространенность альтеративных изменений определяется интенсивностью действующего фактора, устойчивостью клеток к этому воздействию и способностью клеточных механизмов компенсировать патологические изменения. Повреждение ткани сопровождается выделением биологически активных веществ, способных еще в большей степени увеличивать альтеративные процессы — вызывать вторичную альтерацию.

Независимо от особенностей воздействующего фактора, индуцирующего воспалительный процесс, все изменения в клетках можно свести к следующим типам:

1. Повреждения клеточных мембран, приводящие к нарушениям биоэлектрогенеза, энергетического обеспечения работы транспортных систем клеток, изменениям трансмембранного обмена жидкости и ионов между клеткой и внеклеточной средой.

2. Изменения в генетическом аппарате клеток, сопровождаемые нарушениями процессов пролиферации и дифференцировки, а также регуляторными изменениями протекания метаболических процессов.

3. Нарушения в отдельных метаболических цепях, сопровождаемые специфическими изменениями в характере и направленности протекания обменных процессов.

защитные реакции организма

Деструктивные процессы в тканях, возникающие в альтернативной стадии (фазе) воспаления, имеют преимущественно патологический характер. Их выраженностью в значительной степени определяется возможная степень неблагоприятного течения воспалительного процесса в целом.

Подразделение изменений в клетках, характерных для альтеративной стадии воспаления, на обратимые сублетальные и необратимые летальные достаточно условно.

При обратимых сублетальных изменениях клетка способна адаптироваться и восстанавливать свою структуру и функцию. В этом случае, как правило, происходит снижение интенсивности метаболических процессов, ограничение потребления кислорода, угнетение процессов окислительного фосфорилирования, активирование гликолиза, уменьшение запасов макроэргических фосфорных соединений, падение уровня активности K-Na-АТФ-азы, ингибирование внутриклеточных ферментов, активирующих анаболические процессы.

В процессе необратимого повреждения клетки наблюдается постепенное увеличение объема внутриклеточных структур (расширение эндоплазматической сети, набухание митохондрий, увеличение объема лизосом).

Летальные изменения в клетках сопровождаются повреждением наружной и внутриклеточных мембран, в результате чего повышается их пассивная проницаемость для ионов.

Одним из кардинальных признаков повреждения клетки является увеличение содержания натрия в цитозоле и выход во внеклеточную среду калия. Тяжелые метаболические расстройства клеточных функций сопровождаются увеличением содержания кальция в цитозоле.

В нормальных условиях в цитоплазме регистрируется низкая концентрация кальция, не превышающая 10″‘ моль/л, которая обеспечивается непрерывной работой Са-АТФаз. Основные запасы кальция содержатся в эндоплазматическом ретикулуме, большая часть мембраны которого плотно покрыта белком с молекулярной массой 110 кДа, являющегося Са-насосом. Концентрация кальция в эндоплазматическом ретикулуме в 10 000-100 000 раз выше чем в цитозоле.

Деполяризация клеточной мембраны и гидролиз мембранных липидов сопровождаются раскрытием кальциевых каналов, по которым кальций из внутриклеточных депо (цистерн эндоплазматического ретикулума, митохондрий) или интерстициального пространства устремляется в цитозоль. Возникающие в ходе воспаления метаболические нарушения энергообеспечения работы транспортных систем клеток изменяют нормальное протекание процессов реабсорбции кальция, который устремляется из кальцийсодержащих структур и внеклеточной среды в цитозоль по механизмам пассивного транспорта.

— Также рекомендуем «Изменения клеток при альтеративной стадии воспаления.»

Оглавление темы «Ключевые механизмы воспаления легких.»:

1. Мембранно-рецепторный комплекс клеток при хроническом бронхите.

2. Рецепторы при хроническом аллергическом воспалении легких.

3. Мутации адренорецепторов у больных бронхиальной астмой.

4. Изменения мембранных рецепторов при бронхиальной астме.

5. Клеточные механизмы защитных реакций организма при воспалении.

6. Изменения клеток при альтеративной стадии воспаления.

7. Эксудация и эксудативные процессы в ходе воспаления.

8. Роль биологически-активных веществ в патогенезе воспалительного процесса.

9. Серотонин, большой эозинофильный белок в очаге воспаления.

10. Калликреины, брадикинин, калледины в очаге воспаления.

Источник