Проницаемость сосудов в очаге воспаления
Перенос жидкой части крови и белков из крови в ткани называется экссудацией, а сама жидкость называется экссудатом.
Механизм экссудации при воспалении
Воспалительная экссудация – сложный процесс, основными механизмами которого являются:
- повышенная проницаемость капилляров и венозных стенок;
- гиперосмия и в меньшей степени, гиперонхия в очаге воспаления;
- изменение фильтрации жидкости в капиллярах;
- нарушение лимфообращения.
Повышенная проницаемость капилляров и венозных стенок
Повышенная проницаемость является основным фактором патогенеза воспалительной экссудации. Существует две фазы увеличения проницаемости стенок кровеносных сосудов:
- Немедленное увеличение проницаемости, связанное с высвобождением транзиторных медиаторов;
- Позднее длительное (несколько часов) увеличение проницаемости из-за накопления нейтрофилов в очагах воспаления – высвобождение лизосомных ферментов, катионных белков, а также медиаторы пролонгированного действия.
Везикуляция
Электронно-микроскопические исследования показали, что экссудация направляется:
- через эндотелиальные щели;
- через эндотелиальные клетки через внутриклеточные канальцы;
- через пузырьки.
Под влиянием гистамина и серотонина сократительный белок (микрофибриллы) эндотелиальных клеток сжимается, и между этими клетками образуются поры и отверстия. Хинины и другие медиаторы вызывают образование мелких пузырей (пузырьков) в эндотелиальных клетках, а также отек под эндотелием.
Образование везикул и транспорт веществ через эндотелиальную клетку – так называемая везикуляция или ультрапиноцитоз – считается активным процессом, требующим энергии и тесно связанным с системами клеточных мембран аденилциклазы, гуанилциклазы, холинэстеразы и других ферментов.
Везикуляция
Изменение фильтрации жидкости в капиллярах
Также важны при экссудации изменения фильтрации жидкости в капиллярах.
В нормальных условиях, хотя гидростатическое давление крови снижается от артериального конца капилляра к венозному, оно превышает гидростатическое давление ткани, разница между этими давлениями составляет эффективное гидростатическое давление, которое облегчает перенос жидкости из капилляра в ткань.
Онкотическое (коллоидосмотическое) давление крови от конца капиллярной артерии к венозному практически не изменяется и превышает онкотическое давление тканей; разница между этими давлениями и есть эффективное онкотическое давление.
Онкотическое давление работает в отличие от гидростатического – оно удерживает жидкость в капилляре. Эффективное гидростатическое давление на артериальном конце капилляра больше, чем эффективное онкотическое давление, что приводит к ультрафильтрации жидкости из капилляра в ткани.
Напротив, из-за снижения гидростатического давления на венозном конце капилляра эффективное онкотическое давление выше, чем эффективное гидростатическое давление, и поэтому жидкость течет в противоположном направлении – от ткани в капилляре. Часть межклеточной жидкости возвращается в кровоток через лимфатическую систему.
По мере увеличения гидростатического давления крови (HtT) ультрафильтрация жидкости из капилляров в ткань естественным образом становится более интенсивной. В то же время увеличивается площадь стенки капилляра, через которую жидкость фильтруется в ткани. Это уменьшает площадь стенки капилляра, через которую жидкость течет обратно из тканей.
Это один из основных механизмов развития так называемого механического или застойного отека. Он играет важную роль в возникновении отеков у сердечных больных, беременных (отек ног), а также при тромбофлебите, воспалении и других случаях.
Отек ног при беременности
При снижении онкотического давления крови, конечно, снижается и эффективное онкотическое давление, и развивается так называемый онкотический отек. Площадь стенки капилляра, через которую жидкость фильтруется в ткани, увеличивается. Площадь стенки капилляра, через которую жидкость возвращается в капилляр, уменьшается.
Наиболее выраженное увеличение площади фильтрации (OtD) и уменьшение площади возврата жидкости (DT) наблюдается при увеличении эффективного гидростатического давления (HtT) и одновременном снижении эффективного онкотического давления (OtT).
В условиях воспаления артериолы и прекапилляры расширяются, а количество функциональных артериол увеличивается. Повышение скорости кровообращения и гидростатического давления в капиллярах. Все это способствует экссудации. Однако нарушение притока крови к венозному концу капилляров имеет решающее значение для развития экссудации, поскольку препятствует возвращению жидкости в капилляры. Следовательно, экссудация возникает в основном на фоне венозной гиперемии.
Таким образом, воспалительному отеку способствует как повышение гидростатического давления в кровеносном сосуде (в основном, на венозном конце капилляра), так и повышение онкотического давления в тканях. Однако изменения онкотического давления менее важны для развития воспалительного отека, чем изменения осмотического давления.
Нарушение лимфообращения
Экссудация и воспалительный отек также играют важную роль в развитии лимфатических расстройств рефлюкса. Но постоянной связи между терминальными лимфатическими капиллярами и внесосудистыми межклеточными канальцами обнаружено не было.
Когда канальцы заполнены межклеточной жидкостью, они доставляют эту жидкость к капиллярам (жидкость поступает в капилляры через эндотелиальные отверстия). Затем канальцы схлопываются и отделяются от капилляров, в то время как эндотелиальные отверстия закрываются.
В случае воспаления эндотелий лимфатических капилляров повреждается, и внесосудистые канальцы выходят из эндотелиальных отверстий. Развивается так называемый динамический сбой лимфатической системы – лимфатическая система перестает выполнять функции оттока жидкости и развиваются отеки. Нарушения лимфодренажа возникают рано и сохраняются до конца воспаления.
Количество, состав, pH и содержание белка (альбумин, глобулин, фибриноген) в экссудате зависят от патогенных агентов (микроорганизмов, токсинов), вызывающих конкретное воспаление. В прошлом считалось, что по мере увеличения проницаемости сосудов эндотелий действует как простой фильтр – сначала из кровеносного сосуда покидают более мелкие молекулы (альбумины), затем глобулины и, наконец, фибриноген.
В настоящее время считается, что помимо степени увеличения проницаемости сосудов состав экссудата также определяется природой патогенного агента. Например, фибринозный экссудат с высоким содержанием фибриногена, но с низким содержанием глобулина и альбумина. Резорбция белка из экссудата также может играть роль. Если, например, альбумин больше резорбируется, количество глобулина в экссудате может увеличиться.
Экссудат и транссудат
Экссудат – это жидкость, образующаяся при воспалительных заболеваниях и часто инфицированная микроорганизмами.
Транссудат, с другой стороны, представляет собой жидкость, которая переместилась в атипичный участок тела без признаков воспаления, таких как отек или асцит.
Асцит
В клинике очень важно определить, является ли скопившаяся в той или иной области тела жидкость результатом воспаления, поэтому важно отличать экссудат от транссудата.
Типы и отличительные характеристики экссудата
Макроскопически экссудат, как и транссудат, может быть прозрачным, но также может быть опалесцирующим, желтовато-зеленым, гнойным и кровянистым. Между лабораторными тестами на экссудат и транссудат существует несколько существенных различий.
- Из-за повреждения клеток увеличивается активность гидролитических ферментов экссудата.
- Осмотическое давление экссудата превышает осмотическое давление транссудата.
Выделяют следующие основные типы экссудата:
- серозный;
- блютанговый;
- фибринозный;
- геморрагический;
- гнойный.
Серозный экссудат
Серозный экссудат наиболее близок к транссудату – это желтоватая, почти прозрачная жидкость с относительно невысокой относительной плотностью и содержанием кровяных телец. Таким экссудатом может быть ожог кожи II стадии, экссудативный плеврит, серозный менингит и другие случаи.
Блютанговый экссудат
В экссудате блютанга, помимо компонентов серозного экссудата, присутствует слизь. Это происходит в случаях воспаления слизистых оболочек (дыхательных путей, желудочно-кишечного тракта), таких как ринит (воспаление слизистой оболочки носа) и колит (воспаление слизистой оболочки толстой кишки).
Фибринозный экссудат
Фибринозный экссудат возникает, когда фибриноген выходит из кровеносных сосудов и переходит в ткани, где он превращается в фибрин. Фибринозный экссудат также образуется на серозных оболочках и слизистых оболочках из-за пневмококков, дифтерии, дизентерийных палочек и других микробов.
Существует два типа фибринозного экссудата – крупозный и дифтерийный экссудат.
- Крупный экссудат, например, у больных с тяжелой пневмонией, обнаруживается в виде пленки на слизистой оболочке альвеол легких. Удаление этой пленки не повредит слизистые оболочки.
- Дифтерийный экссудат проникает через слизистую оболочку и вызывает некроботические изменения. После удаления дифтерийного экссудата язва остается.
По мере развития воспаления фибриновые пленки растворяются фибринолитической системой.
Геморрагический экссудат
Геморрагический экссудат возникает в результате сильного повреждения стенок кровеносных сосудов, когда в экссудат попадают эритроциты. Обычно это происходит, когда воспаление очень быстрое. Геморрагический экссудат измеряется у пациентов с перитонеальной, плевральной и перикардиальной полостями, пустулами черной оспы, обморожением II степени, аллергическим воспалением (феномен Артуса).
Геморрагический экссудат
Гнойный экссудат
Гнойный экссудат образуется в результате действия гнойных микроорганизмов (стрептококков, стафилококков, туберкулезных палочек). Этот экссудат богат клетками, в основном лейкоцитами. Если острое гнойное воспаление вызвано стрептококками или стафилококками, нейтрофилы преобладают в экссудате, но если воспаление и экссудация вызваны, например, паразитами животных, количество эозинофилов в экссудате увеличивается.
Гнойный экссудат представляет собой вязкую жидкость желтовато-зеленого цвета с характерным сладким запахом. При центрифугировании он распадается на два слоя – сывороточный и клеточный осадок. Гнойные клетки – так называемые гнойные тельца – это поврежденные и мертвые клетки крови (нейтрофилы, лимфоциты, моноциты), клетки воспаленной ткани и микроорганизмы.
В цитоплазме гноя много вакуолей, граница гноя с окружающей средой нечеткая. Наблюдается также кариолиз – набухание и постепенное растворение ядра гноя, в результате чего количество нуклеотидов и нуклеиновых кислот в гное увеличивается. Гнойная сыворотка химически существенно не отличается от сыворотки крови.
- Гнойный экссудат туберкулезного и сифилитического воспаления обычно имеет большое количество лимфоцитов.
- Гнойный экссудат опухоли содержит множество опухолевых клеток и эритроцитов.
Относительная плотность гнойного экссудата высокая (1020–1040). В нем много активных ферментов, продуктов интенсивного протеолиза (полипептиды, аминокислоты), молочная кислота (90-120 мг% и более). Из-за интенсивного гликолиза содержание глюкозы в гнойном экссудате, как и в других экссудатах, обычно ниже, чем в крови (40-50 мг%).
На практике распространены сочетания различных типов воспалений, таких как серозный фибриноз, гнойный фибриноз, геморрагический гнойный экссудат. Заражение любого вида экссудата гнилостными микробами приводит к гниению экссудата.
Капли жира (hilozo) также могут попадать во все экссудаты и создавать так называемый хилозо-экссудат. Этот экссудат возникает, например, когда воспаление локализовано в брюшной полости, области больших лимфатических сосудов.
Продолжение статьи
- Часть 1. Этиология и патогенез воспаления. Классификация.
- Часть 2. Особенности обмена веществ при воспалении.
- Часть 3. Физико – химические изменения. Роль нервной и эндокринной систем в развитии воспаления.
- Часть 4. Изменения в периферическом кровообращении при воспалении.
- Часть 5. Экссудация. Экссудат и транссудат.
- Часть 6. Эмиграция лейкоцитов. Хемотаксис.
- Часть 7. Фагоцитоз. Асептическое и острое воспаление.
- Часть 8. Распространение. Последствия. Принципы лечения воспаления.
Поделиться ссылкой:
Выяснение патогенеза экссудации невозможно без ответа на вопрос: «Что такое сосудистая проницаемость и как она повышается?». Факт большей проницаемости сосудов в очагах воспаления по сравнению с остальными областями сосудистого русла, доказывается простым и демонстративным опытом: коллоидные и другие водорастворимые краски накапливаются только в воспалительных очагах после внутривенного введения животным.
Однако представление о сущности проницаемости сосудов в патофизиологии значительно эволюционировало от простой «дырчатой неровности» к достаточно сложным цитологическим и патохимическим феноменам.
В настоящее время под сосудистой проницаемостью понимают величину, измеряемую количеством жидкости, переносимой через единицу площади сосудистой стенки в единицу времени при единичном трансмуральном градиенте давления. Этот коэффициент в различных тканях варьирует почти стократно – от минимальных значений в малопорозных сосудах мышц и мозга, до максимума в синусоидах печени и клубочках почек, где проницаемость обменных сосудов велика. В среднем он составляет на всё тело 6,67 мл/мин на мм рт.ст. Расчеты, основанные на функциональных характеристиках экссудации, показали, что сосудистая стенка при воспалении ведет себя так, как если бы в ней существовали мелкие (6-8 нм) и крупные (25 нм) поры.
Ясность в вопросе о содержании понятия «проницаемость» внесло открытие, из которого следовало, что помимо механизмов, связанных с межклеточными щелями, решающее значение при экстравазации жидкости имеет ее трансцитоз – транспорт в пиноцитотических везикулах прямо через цитоплазму эндотелиоцитов, а не между ними. Когда за каким-то медиатором признают такой эффект, как повышение проницаемости, это означает, что данный агент увеличивает интенсивность трансцитоза, способствует образованию трансцитотических везикул или ускоряет их перетягивание к наружной стороне клетки ее цитоскелетом с последующей экструзией. Традиционная характеристика некоторых противовоспалительных биорегуляторов, скажем, глюкокортикоидов, как агентов, которые «стабилизируют сосудистую стенку», не означает каких-либо разумных действий этих молекул, а просто может быть заменена на цитологически более конкретное: «дезорганизуют элементы цитоскелета, ингибируют продукцию липидных медиаторов и интерлейкинов и замедляют трансцитоз». В настоящее время общепризнанным является отождествление микропиноцитотических везикул и крупных пор. Не исключено, что и мелкие поры, особенно, в капиллярах – это условное название одной из разновидностей трансцитотического механизма. В этом случае транскапиллярные канальцы – это электронно-микроскопический эквивалент слившихся между собой трансцитотических пузырьков. Доказано, что активация трансцитоза ответственна за повышение сосудистой проницаемости в ткани опухолей.
Другая точка зрения соотносит эффекты, ранее приписывавшиеся существованию мелких пор, с расширением областей межклеточных контактов в посткапиллярных венулах. Имеются основания полагать, что в наборе эффектов, обеспечивающих проницаемость сосудов, известную роль играют анионные пятна на поверхности эндотелия – своего рода ловушки, богатые отрицательными зарядами и способствующие фиксации катионов плазмы крови.
Итак, сосудистая проницаемость – не чисто механический феномен, а сложная комбинация активного транспорта, диффузии и фильтрации, а также электрохимических явлений.
Развитие воспаления всегда связано с изменением периферического кровообращения.
Этот процесс можно рассматривать во времени и пространстве. В первом случае речь идет об изменениях периферического кровообращения, происходящих в одном конкретном месте при развитии воспаления, а во втором – об особенностях кровообращения в разных участках воспалительных очагов.
Стадии изменения кровообращения при воспалении
Последовательность (стадии) изменений кровообращения в очаге воспаления следующая:
- артериолярный спазм;
- артериальная гиперемия;
- венозная гиперемия;
- застой.
Артериолярный спазм
Временное сужение сосудов вызвано действием воспалительных этиологических агентов: они вызывают возбуждение гладкой мускулатуры сосудосуживающих нервов и артериол.
Артериолярный спазм
Спазм кратковременен, потому что первичное действие патогенных агентов быстро прекращается. Кроме того, норадреналин, медиатор симпатической иннервации артериол, быстро разрушается из-за повышения уровня моноаминоксидазы в воспаленных тканях.
Биологическая нацеленность на спазм артериол в организме заключается в подавлении дальнейшего распространения патогенного агента.
Артериальная гиперемия
Гиперемия развивается в следствии действия биологически активных веществ: сначала высвобождается гистамин (в течение 5-30 минут), затем хинины (в течение 1-8 часов), а затем – простагландины и другие медиаторы.
Эти медиаторы снижают мышечный тонус прекапиллярного сфинктера и артериол и тем самым способствуют их расширению. Кроме того, в условиях ацидоза и расслоения чувствительность α-адренорецепторов к сосудосуживающему действию адреналина на прекапиллярные сфинктеры снижается. Артериальная гиперемия развивается как в результате прямого сосудистого, так и аксонального рефлекса.
Увеличивается приток артериальной крови к очагу воспаления. По мере повышения артериального давления открываются ранее нефункционирующие капилляры. Вены расширяются, и в результате удаляется вся притекающая кровь.
Повышение артериального давления
При воспалительной артериальной гиперемии диаметр капилляров и вен увеличивается больше, чем когда артериальная гиперемия не связана с воспалением. Часто эти сосуды расширяются неравномерно – местами появляются варикозные выросты, что способствует «краевому положению» и эмиграции лейкоцитов.
По мере увеличения числа функционирующих капилляров линейная скорость кровотока и, в частности, объемная скорость увеличиваются. Увеличение линейной скорости кровотока увеличивает количество кислорода в венозной крови, и, таким образом, артериовенозный кислородный промежуток уменьшается.
Однако из-за увеличенного объема кровотока количество кислорода, получаемого тканями, увеличивается, что аналогично объему кровотока, умноженному на артериовенозную разницу в кислороде.
Сильная артериальная гиперемия наблюдается при остром воспалении кожи. Вызывает характерное для воспаления местное покраснение.
Венозная гиперемия
По мере прогрессирования воспаления артериальная гиперемия переходит в венозную. Биологически активные вещества, ацидоз, лизосомы лейкоцитов и бактериальные ферменты разрушают венозные и мелкие венозные десмосомы – волокна эластичной и коллагеновой соединительной ткани, окружающие капилляры и вены.
Лизосомные ферменты действуют как непосредственно на коллагеназу сосудистой стенки, так и опосредованно – они влияют на участие образующихся веществ (катионных белков, простагландинов). Катионные белки высвобождают гистамин из тучных клеток в периваскулярном пространстве. В результате капилляры и вены теряют тонус и расширяются под действием артериального давления. Уменьшается скорость кровотока, способствует переносу жидкой части крови к месту воспаления (экссудации).
Постепенно меняется расположение элементов формы в кровотоке. При артериальной гиперемии элементы формы располагаются в основном в центре кровеносного сосуда, но на стенках есть плазма и несколько лейкоцитов. Теперь это разделение исчезает. Кроме того, в кислой среде элементы плесени и стенки сосудов набухают, просвет сосудов сужается.
В первые минуты после смены начинают образовываться тромбы. В результате повреждения стенки формоэлементов и сосудов высвобождаются и активируются факторы свертывания (I, II, III, V, VII, X, XII и др.), Ускоряется свертывание крови. Тромбоз дополнительно затрудняет венозный отток и усиливает прохождение жидкой части крови к тканям, поэтому кровь продолжает сгущаться, образуются агрегаты эритроцитов и сгустки. По мере ускорения свертывания крови фибрин и глобулины откладываются в лимфатических сосудах, и образуются конгломераты лимфоцитов, что затрудняет возврат лимфы из места воспаления.
По мере перехода жидкой части крови и элементов формы к месту воспаления (эмиграции) давление жидкости в воспаленных тканях увеличивается. Мелкие вены и лимфатические сосуды еще сильнее сдавливаются, в результате чего прогрессируют нарушения оттока крови и лимфы («магический круг» патогенеза).
Таким образом, переходу артериальной гиперемии в венозную способствуют два фактора:
- внутрисосудистые факторы – набухание и агрегация формоэлементов, положение края лейкоцитов, тромбообразование, загустение крови, набухание эндотелия, нарушения структуры вен и мелких вен;
- внесосудистые факторы (факторы экссудата) – лимфатическое подавление экссудатом.
Описанная венозная гиперемия (застой) была названа Конгеймом истинной воспалительной гиперемией. Выраженно часто встречается у пациентов с хроническим воспалением: оттенок воспаления синеватый.
Стазислокальное прекращение кровотока
Венозная гиперемия, скопление элементов формы, шлак и застой в очаге воспаления возникают в основном в капиллярах, венах и мелких венах, поэтому обычно говорят о застойных явлениях (венозных) и истинном застое капилляров.
Застой капилляров
Перед остановкой кровотока часто возникают колебательные движения крови – во время систолы кровь движется вперед, во время диастолы – назад. Когда пульсовая волна проходит через расширенные артериолы во время систолы, возникает так называемый капиллярный пульс.
Ионы водорода и калия повышают возбудимость нервных рецепторов в месте воспаления. Эти ионы, осмотически активные вещества, полипептиды (брадикинин), гистамин, а также механические факторы (экссудат, расширенные кровеносные сосуды и лимфатические сосуды) раздражают рецепторы чувствительных нервов и вызывают местные клинические признаки воспаления, боли. Капиллярные импульсы также механически раздражают рецепторы и вызывают пульсирующую боль, например, у пациентов с панаридозом, пульпитом и другими острыми воспалениями.
В дополнение к маятниковым движениям, которые происходят в сердечном ритме, на стадии венозной гиперемии происходят другие изменения кровотока – закупорка капилляров агрегатами состава, промывание тромба, сжатие открытия или закрытия просвета капилляров, региональное расширение капилляров и т. д. Эти нарушения не являются синхронными.
Однако наблюдаемые изменения кровообращения при развитии воспаления не всегда постоянны. Спазм артериол часто не обнаруживается. Острое воспаление после легкого ожога в основном характеризуется артериальной гиперемией, тогда как сразу после сильного кислотного ожога наблюдается застой. При хроническом воспалении кожи обычно наблюдаются признаки венозной гиперемии, отека и цианоза.
Если посмотреть на клинически выраженное очаговое воспаление в пространстве, наиболее выраженное повреждение ткани находится в центре очага (зона альтерации) – тромбоз сосудов, некроз тканей, гнойные тела, микрофаги, а также могут быть обнаружены наиболее серьезные отеки.
Зона альтерации окружена тканями с высокой концентрацией биологически активных веществ, в которых возникают тяжелые нарушения кровообращения – венозный застой и венозная гиперемия. Затем, по направлению к периферии, следует самая широкая область – артериальная гиперемия, которая вызывает покраснение от источника воспаления.
В области артериальной гиперемии концентрация биологически активных веществ ниже. Зона микрофага по направлению к периферии окружена зоной макрофагов и фибробластов.
Продолжение статьи
- Часть 1. Этиология и патогенез воспаления. Классификация.
- Часть 2. Особенности обмена веществ при воспалении.
- Часть 3. Физико – химические изменения. Роль нервной и эндокринной систем в развитии воспаления.
- Часть 4. Изменения в периферическом кровообращении при воспалении.
- Часть 5. Экссудация. Экссудат и транссудат.
- Часть 6. Эмиграция лейкоцитов. Хемотаксис.
- Часть 7. Фагоцитоз. Асептическое и острое воспаление.
- Часть 8. Распространение. Последствия. Принципы лечения воспаления.